Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Tang Jinshu, Han Wentao, Zhang Kun, Chen Gang, Ye Zujun, Zhang Chuan, Fu Jianping. EXPERIMENTAL STUDY OF MECHANICAL BEHAVIORS OF SRC BEAMS UNDER ECCENTRIC TENSION[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(8): 170-174. doi: 10.13204/j.gyjz201508031
Citation: He Mingsheng, Wang Yong, Xia Duotian, Fu Xiaojian, Shi Leiwei. EXPERIMENTAL STUDY ON SHEARING STRENGTH OF THE NEW COMPOSITE BLOCK MASONRY[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(5): 94-98. doi: 10.13204/j.gyjz201305020

EXPERIMENTAL STUDY ON SHEARING STRENGTH OF THE NEW COMPOSITE BLOCK MASONRY

doi: 10.13204/j.gyjz201305020
  • Received Date: 2012-07-25
  • Publish Date: 2013-05-20
  • The composite masonry of thermal-insulating lightweight concrete hollow block is a new type of structure with composite polystyrene(EPS) soil as its inner core and the lightweight concrete block as its external mould, because it makes the heat preservation and antiseism as a whole, so it suits to town building.In this paper, based on the experiment of 9 groups and 27 shear specimens, the laws of anti-shearing intensity and shear failure mechanism of the composite block masonry were analysed, it was analyzed the effects of different mixture proportions of inner core strength, different grouting ratio and different mortar strength on the shearing strength of composite block masonry.Meanwhile 1 group of shear specimens of baked brick and concrete perforated brick were made to compared with the new composite block;the results show that inner core strength is a major influence factor for masonry shearing strength, and mortar strength is weak for masonry shearing strength, at the same time, inner core strength is about 71% contribution for masonry shearing strength.In the end, the shearing intensity of the composite block masonry was higher than the soil brick and concrete porous brick.
  • 黄靓,陈胜云,陈良,等.灌孔砌块砌体抗剪强度梁式计算模型[J].工程力学,2010,27(8):140-145.
    [2] 杨伟军,施楚贤.灌芯混凝土砌体抗剪强度的理论分析和试验研究[J].建筑结构,2002,32(2):63-65,72.
    [3] 谢小军.混凝土小型砌块砌体力学性能及其配筋墙体抗震性能的研究[D].长沙:湖南大学,1998.
    [4] 眭小龙,何明胜,付小建.基于正交试验的 EPS 混合土抗压强度的研究[J].石河子大学学报:自然科学版,2011,29(2):253-256.
    [5] 付小建,何明胜,夏多田,等.聚苯乙烯轻质混合土配合比优化设计[J].新型建筑材料,2011(12):245-248.
    [6] GB 500032001砌体结构设计规范[S].
    [7] GBJ 12990砌体基本力学性能试验方法标准[S].
  • Relative Articles

    [1]REN Jinlong, RONG Muning, XING Yunlin, ZHENG Ming, NIE Xin, FAN Jiansheng, LIU Yufei. Micro Vibration Test and Analysis in Experiment Hall of Beijing High Energy Photon Source Facility Induced by Artificial Frequency Sweep Excitation[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(1): 61-67. doi: 10.3724/j.gyjzG23022008
    [2]LIU Yan, XIU Xuehua. A OPTIMAL METHOD OF URBAN GAS STATIONS BASED ON THE DISTANCE ATTENUATION THEORY AND ITS PRACTICE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(10): 32-38. doi: 10.13204/j.gyjzG20070703
    [5]Zhang Yanhong, Yang Yongxing, Yao Yong, Li Biao. DURABILITY TEST AND ATTENUATION MODEL OF GFRP PERFORMANCE IN HOT AND HUMID ENVIRONMENT[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(10): 46-50. doi: 10.13204/j.gyjz201410010
    [7]Chen Zhongqing, Xu Chao, Ye Guanbao, Lu Sheng, Li Junshi. FIELD EVALUATION OF DYNAMIC COMPACTION ON SILT FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 106-110. doi: 10.13204/j.gyjz201304022
    [8]Wu Lichun, Wang Houxing, Yin Qingfang. EFFECTS OF RAMMING ENERGY OF DYNAMIC CONSOLIDATION ON THE IMPROVEMENT OF SATURATED HYDRAULIC FILL[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(1): 128-132. doi: 10.13204/j.gyjz201201024
    [9]Meng Qingjuan, Huang Hongyun, Qiao Jingsheng. MODEL TEST STUDY ON VIBRATION INFLUENCE RANGE OF DYNAMIC COMPACTION OF CAOFEIDIAN DREDGER FILL FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(7): 115-118. doi: 10.13204/j.gyjz201207019
    [10]Zhan Jinlin, Shui Weihou, He Lijun, Cheng Xiaocheng. 12 000 kN·m ENERGY DYNAMIC COMPACTION EXPERIMENT FOR COLLAPSIBLE LOESS[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(6): 93-96. doi: 10.13204/j.gyjz201006021
    [11]Zhan Jinlin, Shui Weihou, He Lijun, Cheng Xiaocheng. EXPERIMENTAL STUDY ON TREATMENT OF THICK GRAVEL SOIL FOR MARINE RECLAMATION LAND USING DYNAMIC COMPACTION OF 18000 kN·m[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(4): 96-99. doi: 10.13204/j.gyjz201004021
    [12]Xu Changjie, Zhang Zhengwei. NUMERICAL ANALYSIS OF THE LARGE DEFORMATION THEORY DURING DYNAMIC CONSOLIDATION ON SOILS BY THICK FILL[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(6): 48-51,14. doi: 10.13204/j.gyjz200406016
    [13]Hong Wenxia. TREATMENT OF HIGHWAY IN BEACH WITH DYNAMIC COMPACTION[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(8): 87-89. doi: 10.13204/j.gyjz200408028
  • Cited by

    Periodical cited type(14)

    1. 张友顺. 型钢混凝土抗拉柱侧向挠度研究. 长江工程职业技术学院学报. 2022(01): 1-3+8 .
    2. 张鹏,覃宣盛,邓宇,桂金洋,花东升. 低周反复荷载下预应力型钢混凝土偏心受拉构件延性分析. 工程抗震与加固改造. 2022(03): 47-55+64 .
    3. 张鹏,花东升,邓宇. 低周反复荷载下预应力CFRP筋-型钢/混凝土偏拉构件抗裂性能试验. 复合材料学报. 2022(08): 4017-4027 .
    4. 邓宇,孙仁中,张鹏,李真真. 拉-弯-剪复合作用下型钢混凝土柱抗震性能研究及损伤量化分析. 振动与冲击. 2021(04): 195-204 .
    5. 张鹏,桂金洋,邓宇,沈民合,孙飞,赵晓冬. 偏心受拉作用下预应力CFRP筋-型钢混凝土构件抗裂试验. 复合材料学报. 2021(03): 920-931 .
    6. 张鹏,桂金洋,邓宇,覃宣盛,花东升. SRC偏心受拉构件抗震性能试验研究. 工程抗震与加固改造. 2021(01): 69-75 .
    7. 张鹏,李真真,邓宇,孙仁中. 型钢混凝土柱在拉-弯-剪复合受力下的延性分析. 混凝土. 2021(03): 48-53+58 .
    8. 张友顺,张友敬,武曦睿. 基于ANSYS的SRC柱抗拉性能分析. 长江工程职业技术学院学报. 2021(02): 1-4 .
    9. 史红伟,李慧,王晓磊. 不同型钢翼缘宽度和型钢位置对SRC组合板承载力影响有限元分析. 邯郸职业技术学院学报. 2021(02): 36-41 .
    10. 张友顺,王立明,张友敬. 型钢混凝土抗拉柱裂缝研究. 工程建设. 2021(10): 61-65 .
    11. 邓宇,武晓彤,张鹏. 预应力型钢混凝土柱偏心受拉性能试验研究. 建筑结构学报. 2019(05): 115-123 .
    12. 陈晓菁,程少彬. 钢骨混凝土拉弯工况下承载力计算研究. 广东土木与建筑. 2019(06): 24-26 .
    13. 邓宇,武晓彤,张鹏. 无黏结预应力型钢混凝土偏拉构件裂缝控制试验研究及计算方法. 工业建筑. 2019(08): 185-189+16 . 本站查看
    14. 吴帮,王泽曦,申波,马克俭,赵庆阳,张晓辉,赵啸峰. 型钢混凝土组合空腹夹层板结构静动力性能分析. 建筑结构. 2017(04): 81-86 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.0 %FULLTEXT: 20.0 %META: 80.0 %META: 80.0 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 20.0 %其他: 20.0 %上海: 1.7 %上海: 1.7 %中山: 3.3 %中山: 3.3 %北京: 3.3 %北京: 3.3 %南京: 8.3 %南京: 8.3 %台州: 1.7 %台州: 1.7 %张家口: 6.7 %张家口: 6.7 %杭州: 1.7 %杭州: 1.7 %漯河: 1.7 %漯河: 1.7 %芒廷维尤: 33.3 %芒廷维尤: 33.3 %芝加哥: 1.7 %芝加哥: 1.7 %西宁: 15.0 %西宁: 15.0 %重庆: 1.7 %重庆: 1.7 %其他上海中山北京南京台州张家口杭州漯河芒廷维尤芝加哥西宁重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (156) PDF downloads(83) Cited by(21)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return