Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Weng Zhenjiang, Yin Lingfeng, Shan Jian, Tang Gan, Huang Wei, Wu Feng. AUTOMATIC EMPLACEMENT CONSTRUCTION METHODS OF LARGE SINGLE-LAYER PLANE CABLE NET CURTAIN WALL BASED ON FORM-FINDING ANALYSIS[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(10): 75-80. doi: 10.13204/j.gyjz201110019
Citation: Zhao Wei, Zhou Guangen, Wu Chong, . ELASTIC BUCKLING PROPERTY OF STEEL PLATE SHEAR WALL WITH VERTICAL STIFFENERS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(1): 104-107. doi: 10.13204/j.gyjz201301023

ELASTIC BUCKLING PROPERTY OF STEEL PLATE SHEAR WALL WITH VERTICAL STIFFENERS

doi: 10.13204/j.gyjz201301023
  • Received Date: 2012-08-20
  • Publish Date: 2013-01-20
  • To study the elastic-buckling behaviors of steel plate wall with longitudinally stiffened only,the present design formulas and regulations for the design of stiffeners in steel shear walls were compared.And elastic-buckling behaviors of steel plate wall with longitudinally stiffened only were analyzed in detail with 3 D finite element methods(FEM).The effects of stiffener stiffness,stiffener number and aspect ratio of steel plate were analyzed.The research results showed that the longitudinal stiffener could increase the critical stress of steel plate wall efficiency,and the elastic shear buckling coefficient of stiffened steel plate wall was affected largely by the aspect ratio of steel plate,stiffener number and the bending stiffness of stiffener.The determination criterion of threshold stiffness and formula for stiffener were proposed.The torsional stiffness of stiffener was considered in the criterion.At last,the formula of elastic buckling coefficient for steel plate wall with longitudinally stiffened only was derived.Comparison with the numerical results showed that the accuracy of the formula was good and was superior than that of formulas in literature.
  • JGJ 9998高层民用建筑钢结构技术规程[S].
    [2] 童根树.钢结构设计方法[M].北京:中国建筑工业出版社,2007.
    [3] Kulak G L,Kennedy. D J L,Robert G D. Steel Plate ShearWalls: An Overview[J]. Engineering Journal,2001,38(1):50-62.
    [4] Alinia M M,Dastfan M. Behaviour of Thin Steel Plate Shear WallsRegarding Frame Members[J]. Journal of Constructional SteelResearch,2006,62(7):730-738.
    [5] Alinia M M,Dastfan M. Cyclic Behaviour Deformability andRigidity of Stiffened Steel Shear Panels [J]. Journal ofConstruction Steel Research,2007,63(4):554-563.
    [6] 郭彦林,陈国栋,缪文武.加劲钢板剪力墙弹性抗剪屈曲性能研究[J].工程力学,2006,23(2):84-91.
    [7] 赵伟,杨强跃,童根树.钢板剪力墙加劲刚度及弹性临界应力研究[J].工程力学,2010(6):15-23.
    [8] GB 500172003钢结构设计规范[S].
    [9] Yoo C H,Lee S C. Mechanics of Web Panel PostbucklingBehavior in Shear [J]. Journal of Structural Engineering,2006,132(10):1580-1589.
  • Relative Articles

    [1]XUE Weichen, ZHANG Baozheng, CHEN Shengyang, JIANG Jiafei, GUO Dapeng. State of the Art on Mechanical Properties of Precast Prestressed Concrete Structures (for Buildings and Utility Tunnels)[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(10): 9-20. doi: 10.3724/j.gyjzG24100801
    [2]WANG Chenxia, ZHANG Duo, CAO Fubo, WU Yaxuan, YE Chang, LI Lan. Research on Mechanical Properties and Damage of Recycled Concrete After Being Subjected to Freeze-Thaw Cycles[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 199-207. doi: 10.13204/j.gyjzG20091704
    [3]RONG Hua, JING Yuxiang, WANG Yulin, GENG Yan. Effects of Elevated Temperature and Irradiation on Performance Degradation of Concrete Structures[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 133-138. doi: 10.13204/j.gyjzG22062009
    [4]CHEN Yuliang, JI Yunpeng, CHEN Zongping, LIU Jie, YAN Fang, TAN Beilu. DEFORMATION AND DAMAGE ANALYSIS OF PEBBLE CONCRETE UNDER TRIAXIAL COMPRESSION[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(11): 159-164,24. doi: 10.13204/j.gyjzG21030802
    [5]WANG Yuliang, CUI Hongjun, ZHANG Yumin, CAI Zhanjun, XU Lixian. EXPERIMENTAL RESEARCH ON SEISMIC BEHAVIOR OF PREFABRICATED SHEAR WALL WITH ENERGY DISSIPATION BY VERTICAL JOINTS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 46-51. doi: 10.13204/j.gyjzG19102703
    [6]LI Ganggang, ZHAO Jun. SEISMIC CHARACTERISTICS OF HYBRID FRP-STEEL-REINFORCED CONCRETEL SHEAR WALLS SUBJECTED TO CYCLIC LOADS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(10): 180-186,75. doi: 10.13204/j.gyjz201904140005
    [7]BAI Yajia, LIU Huaxin, LI Qingwen, WANG Xuezhi, PENG Changling. SHEAR BEHAVIOR OF RECYCLED CONCRETE BEAMS WITH BASALT FIBER REINFORCEMENT WITHOUT WEB REINFORCEMENT[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(4): 156-161,137. doi: 10.13204/j.gyjz202004027
    [8]Wang Ercheng, Shan Renliang, Wei Longfei, Cao Jianyang, Song Liwei. EXPERIMENTAL ANALYSIS OF QUASI DYNAMIC DAMAGE OF EARLY-AGE HIGH STRENGTH CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(03): 110-113. doi: 10.13204/j.gyjz201403023
    [9]Chen Zongping, Wang Huanhuan, Xue Jianyang, Chen Yuliang. SHEAR PROPERTIES EXPERIMENT OF STEEL REINFORCED RECYCLED AGGREGATE CONCRETE BEAMS AFTER ELEVATED TEMPERATURES[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(11): 51-57. doi: 10.13204/j.gyjz2001411009
    [10]Chen Zongping, Zheng Wei, Ye Peihuan, Zhang Shiqian. EXPERIMENTAL STUDY ON MECHANICAL BEHAVIOUR OF REINFORCED RECYCLED COARSE AGGREGATE CONCRETE COLUMNS[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(04): 65-68.
    [11]Zhang Yiduo, Xu Lulu, Liu Ronggui, Liu Tao. STUDY ON DAMAGE OF PRE-STRESSED CONCRETE BEAMS IN THE ALTERNATIVE ACTION OF FREEZE-THAWING AND FATIGUE LOAD[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 57-61. doi: 10.13204/j.gyjz201304012
    [12]Ni Guowei, Jiang Xinliang. REINFORCEMENT AND REPAIR METHOD OF EARTHQUAKE DAMAGED CONCRETE STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(2): 49-54,98. doi: 10.13204/j.gyjz201302010
    [13]Wang Yilin. NEW DAMAGE LOCALIZATION INDICATOR FOR SINGLE-SPAN BEAMS BASED ON CURVATURE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(8): 19-23. doi: 10.13204/j.gyjz201308004
    [14]Chen Zongping, Xu Jinjun, Huang Kaiwang, Su Yisheng. TEST STUDY ON BOND PROPERTIES BETWEEN HIGH STRENGTH STEEL BAR AND RECYCLED AGGREGATE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 16-20. doi: 10.13204/j.gyjz201311004
    [15]Chen Lin-zhi, Feng Yuan. INFLUENCE OF RIGID ZONE SETTING FOR BEAMS AND COLUMNS ON SEISMIC PERFORMANCE OF REINFORCED CONRETE FRAME STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(9): 75-78. doi: 10.13204/j.gyjz201209017
    [16]Du Zhaohua, Hao Tong, Zhao Lintao. EXPERIMENTAL STUDY ON THE COMPRESSION PERFORMANCE OF RECYCLED AGGREGATE CONCRETE COLUMNS[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(4): 31-36. doi: 10.13204/j.gyjz201204007
    [17]Shi Yanghang, Wu Zejin, Peng Chong, Wang Dafu. EXPERIMENTAL STUDY ON COMPREHENSIVE STRENGTH OF RECYCLED AGGREGATE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(4): 5-9,14. doi: 10.13204/j.gyjz201204002
    [18]Liu Feng, Bai Guoliang, Chai Yuanyuan, Wu Shuhai. EXPERIMENTAL RESEARCH ON RECYCLED AGGREGATE CONCRETE TENSILE AND SHEAR STRENGTH[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(12): 70-74. doi: 10.13204/j.gyjz201012018
    [19]Li XuPing. LONG-TERM MECHANICAL PROPERTIES OF RECYCLED AGGREGATE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(10): 80-84. doi: 10.13204/j.gyjz20081020
    [20]Yang Weizhong, Wang Bo. A STOCHASTIC DAMAGE CONSTITUTIONAL MODEL AND ITS APPLICATION TO UNIAXIAL TENSILE BEHAVIOR OF CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(10): 50-52,43. doi: 10.13204/j.gyjz200410015
  • Cited by

    Periodical cited type(55)

    1. 李一冰,云广琨,沈东亮. 再生粗骨料混凝土弯曲疲劳性能研究. 建筑机械. 2024(01): 38-41 .
    2. 胥民尧,王耀,秦煜,侯长超. 再生骨料表面残留附着砂浆含量统计. 混凝土. 2024(01): 148-154 .
    3. 牛海成,尚天宇,李博涵,黄明晖. 钢管高强再生混凝土叠合柱偏压性能. 建筑钢结构进展. 2024(08): 1-10 .
    4. 王剑君,张新雨,周力强. 再生骨料掺量对混凝土耐久性的影响研究. 甘肃科技. 2024(09): 82-87 .
    5. 孙立愫,曹孙喆. 轨道交通工程施工期固体废物综合利用及效益分析. 铁路节能环保与安全卫生. 2024(05): 28-32 .
    6. 张欣怡,戴成元,李微雨,陈阳,刘兵. 基于TPE-XGBoost算法的再生粗骨料混凝土抗压强度预测模型. 建筑科学与工程学报. 2024(06): 100-110 .
    7. 宋福生. 基于二级配再生骨料的水工混凝土抗压强度研究. 黑龙江水利科技. 2023(04): 19-22 .
    8. 付勇,乔宏霞,薛翠真,宋彦宁. 基于GM(1, 1)模型对大体积混凝土抗冻性服役寿命进行预测. 铁道科学与工程学报. 2023(08): 3151-3161 .
    9. 佟英男. 再生砖混骨料的研究现状与应用探讨. 科技创新与应用. 2023(27): 152-154+159 .
    10. 苏振华,李少华,蔡亚宁,陈利敏,彭李洋,赵伟. 国家速滑馆看台板再生骨料混凝土力学及耐久性能试验研究. 工业建筑. 2023(07): 209-216 . 本站查看
    11. 王海涛,陈磊,许国文,熊浩,茆亚辉. BFRP管约束再生混凝土圆柱轴压试验. 河海大学学报(自然科学版). 2023(06): 77-83 .
    12. 郭少龙,陈为石,鹿群,李国栋. 玄武岩纤维增强再生混凝土的单轴受压试验研究. 天津城建大学学报. 2023(06): 385-390 .
    13. 苏捷,朱君,史才军,方志. 硅灰强化再生混凝土抗压强度尺寸效应. 湖南大学学报(自然科学版). 2022(05): 174-180 .
    14. 钟楚珩,龙宇华,周金枝,吴维熙. 再生混凝土疲劳可靠度及疲劳寿命预测. 工业建筑. 2022(04): 140-145+83 . 本站查看
    15. 牛海成,高锦龙,吉珈琨,王兴国,张向冈. 钢管高强再生混凝土叠合柱轴压性能. 复合材料学报. 2022(08): 3994-4004 .
    16. 张国平. 再生粗集料混凝土单轴受压本构关系试验研究. 铁道建筑技术. 2022(08): 15-19 .
    17. 李佳鑫. 煤矸石掺再生骨料混凝土研究综述与展望. 四川建材. 2022(09): 17-19 .
    18. 刘恩铭,林明强,谢群. 再生粗骨料混凝土抗冻性能研究进展. 硅酸盐通报. 2022(09): 2963-2978 .
    19. 牛海成,高锦龙,张耀宗,丁亚红. 方钢管高强再生混凝土叠合柱轴压性能试验研究. 实验力学. 2022(06): 921-932 .
    20. 夏冬桃,何国章,李彪,谢少军,付敏. 不同最大粒径粗骨料和钢纤维掺量对再生混凝土抗冲击性能的影响. 混凝土. 2022(12): 100-105+109 .
    21. 邓椀升. 废弃玻璃材料在再生混凝土中的应用研究. 造纸装备及材料. 2022(12): 78-80 .
    22. 安新正,张翠霞,刘浩楠,边金明,芈峥. 再生粗骨料取代率对碎卵石混凝土抗压性能影响研究. 河北工程大学学报(自然科学版). 2021(01): 47-52 .
    23. 王兴国,姜茂林,张向冈,王永贵,牛海成. 钢管再生混凝土柱力学性能研究进展. 铁道科学与工程学报. 2021(05): 1256-1266 .
    24. 方小利,秦琪,吴建功,李云翔,严继康. 混凝土废料制备再生骨料用于混凝土生产的试验研究. 混凝土世界. 2021(08): 65-69 .
    25. 周静海,林东野,康天蓓,刘昱. 废弃纤维再生混凝土梁抗弯性能研究. 工业建筑. 2021(05): 70-75+107 . 本站查看
    26. 王建东,钟悦,吴桐青,田哲祺,卢宽. 持载与骨料替代率对再生混凝土抗压抗渗性能的影响. 浙江建筑. 2021(06): 54-55+59 .
    27. 赵祥冉,张圣菊,薛洁,王仲,李羿. 利用垃圾废料制备透水混凝土试验研究. 新型建筑材料. 2020(05): 13-16 .
    28. 肖前慧,李阳阳,邱继生,刘小林. 冻融与硫酸盐侵蚀耦合作用下不同骨料取代率再生混凝土损伤研究. 地震工程与工程振动. 2020(04): 101-107 .
    29. 邵昀泓,庞亚凤,郑元勋,孔维兴. 再生混凝土破坏机理及力学增强策略研究综述. 郑州大学学报(工学版). 2020(04): 17-22 .
    30. 惠存,李丹丹,海然,刘盼,尚奇. 不同砂率高强再生混凝土工作性和力学性能试验研究. 工业建筑. 2019(01): 136-139 . 本站查看
    31. 闫美珠,杨利民,卢亚荣. 改性方法对再生骨料混凝土流动性和力学性能的影响. 商品混凝土. 2019(Z1): 46-52 .
    32. 杨枫林,赵亚松,高建明. 再生混凝土断裂性能试验研究. 江苏建材. 2019(02): 24-28 .
    33. 唐佳军,裴长春. 基于SL 191的RAC梁开裂弯矩计算公式研究. 延边大学学报(自然科学版). 2019(01): 55-57 .
    34. 刘志龙,杜向琴,胡强圣,卢晨怡. 再生骨料混凝土抗压强度的试验研究及其机理分析. 盐城工学院学报(自然科学版). 2019(04): 5-11 .
    35. 韩定杰,刘中宪,刘华新,张志金,彭长岭. 玄武岩纤维筋增强再生混凝土梁抗剪性能的试验研究. 玻璃钢/复合材料. 2018(02): 15-20 .
    36. 纪锋,何兵. 再生混凝土力学性能的研究进展. 绿色环保建材. 2018(03): 214 .
    37. 张亚飞,安新正,牛薇,杨莹莹. 再生细骨料对再生骨料混凝土抗压性能影响研究. 河北工程大学学报(自然科学版). 2018(02): 71-74 .
    38. 刘坚,毛捷,于志伟,陈原,周观根,任达,张绍斌. 钢管约束型钢再生混凝土柱的抗震性能分析. 混凝土. 2018(03): 1-7 .
    39. 邓宇,任吉,谭春雷,曾鑫,张鹏,甘德丽,杨希涛. 陶粒掺量和粉煤灰替代水泥掺量对轻质水泥基砌块力学性能的影响. 混凝土. 2018(08): 129-132 .
    40. 闫春岭,史永涛,胡春生,胡海波. 再生混凝土抗压强度试验及回归分析. 施工技术. 2018(08): 102-106 .
    41. 王瑞骏,赵叶,缑彦强,许萍. 不同粒径再生粗骨料混凝土单轴受压应力-应变关系试验研究. 水利水电技术. 2018(05): 193-198 .
    42. 王瑞骏,缑彦强,徐帆. 不同粒径再生粗骨料二级配混凝土力学性能试验研究. 水力发电. 2018(03): 101-105 .
    43. 闫美珠,程山博. 再生混凝土力学性能研究. 陕西建筑. 2018(01): 46-50 .
    44. 刘坚,毛捷,陈原,周观根,于志伟,任达. 方钢管约束型钢再生混凝土柱-钢梁节点抗震性能分析. 建筑科学与工程学报. 2018(03): 25-34 .
    45. 闫春岭,史永涛,丁成伟. 循环荷载下再生混凝土疲劳试验. 水泥工程. 2018(06): 10-13 .
    46. 孙冰,肖茁良,陈露辉,李一鸣,蒲华乔. 再生混凝土力学性能研究进展. 硅酸盐通报. 2017(02): 497-502 .
    47. 刘震宇,秦鸿根,刘冠国,马彪,张国荣. 再生混凝土力学性能提升技术与应用. 水利水电科技进展. 2017(01): 90-94 .
    48. 周伯贤,张磊,贺玲凤. 两种再生粗骨料混凝土单轴受压性能研究. 实验力学. 2017(01): 43-48 .
    49. 杨俊,李晓峰,相飞飞,陈峻松,胡圣列. 废弃混凝土用作再生路面的试验研究. 深圳大学学报(理工版). 2017(03): 252-258 .
    50. 姜鲁,刘元珍,王文婧,胡凤丽. 再生骨料级配对再生保温混凝土抗压强度的影响. 广西大学学报(自然科学版). 2016(04): 1200-1205 .
    51. 朱红兵,许永强,夏博,张尧. 再生混凝土抗折疲劳试验断面破坏形态分析. 工业建筑. 2016(06): 133-136+73 . 本站查看
    52. 朱红兵,张尧,夏博,许永强. 再生混凝土抗折疲劳性能衰减规律试验研究. 混凝土. 2016(04): 57-59+63 .
    53. 闫春岭,赵韩菲,田彦歌. 再生粗骨料混凝土的抗压强度正交试验分析. 河南理工大学学报(自然科学版). 2016(05): 738-744 .
    54. 侯勇辉,秦拥军,李振兴,陈丽萍. 掺锂渣再生粗骨料混凝土力学性能试验研究. 新型建筑材料. 2016(11): 17-19+42 .
    55. 陈宗平,谭秋虹,徐金俊. 方钢管再生混凝土柱偏压性能影响因素分析. 解放军理工大学学报(自然科学版). 2015(02): 47-53 .

    Other cited types(68)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04012345
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.2 %FULLTEXT: 18.2 %META: 81.8 %META: 81.8 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.5 %其他: 4.5 %北京: 25.0 %北京: 25.0 %台州: 2.3 %台州: 2.3 %张家口: 2.3 %张家口: 2.3 %扬州: 2.3 %扬州: 2.3 %杭州: 2.3 %杭州: 2.3 %湖州: 6.8 %湖州: 6.8 %漳州: 2.3 %漳州: 2.3 %石家庄: 4.5 %石家庄: 4.5 %芒廷维尤: 40.9 %芒廷维尤: 40.9 %重庆: 2.3 %重庆: 2.3 %金华: 4.5 %金华: 4.5 %其他北京台州张家口扬州杭州湖州漳州石家庄芒廷维尤重庆金华

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (121) PDF downloads(88) Cited by(123)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return