Zhao Wei, Zhou Guangen, Wu Chong, . ELASTIC BUCKLING PROPERTY OF STEEL PLATE SHEAR WALL WITH VERTICAL STIFFENERS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(1): 104-107. doi: 10.13204/j.gyjz201301023
Citation:
Zhao Wei, Zhou Guangen, Wu Chong, . ELASTIC BUCKLING PROPERTY OF STEEL PLATE SHEAR WALL WITH VERTICAL STIFFENERS[J]. INDUSTRIAL CONSTRUCTION , 2013, 43(1): 104-107. doi: 10.13204/j.gyjz201301023
Zhao Wei, Zhou Guangen, Wu Chong, . ELASTIC BUCKLING PROPERTY OF STEEL PLATE SHEAR WALL WITH VERTICAL STIFFENERS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(1): 104-107. doi: 10.13204/j.gyjz201301023
Citation:
Zhao Wei, Zhou Guangen, Wu Chong, . ELASTIC BUCKLING PROPERTY OF STEEL PLATE SHEAR WALL WITH VERTICAL STIFFENERS[J]. INDUSTRIAL CONSTRUCTION , 2013, 43(1): 104-107. doi: 10.13204/j.gyjz201301023
ELASTIC BUCKLING PROPERTY OF STEEL PLATE SHEAR WALL WITH VERTICAL STIFFENERS
1.
1. College of Civil Engineering,Tongji University,Shanghai 200092,China;
2.
2. Zhejiang Southeast Space Frame Co.Ltd,Hangzhou 311209,China;
3.
3. Zhejiang Technical Institute of Communications,Hangzhou 311112,China
Received Date: 2012-08-20
Publish Date:
2013-01-20
Abstract
To study the elastic-buckling behaviors of steel plate wall with longitudinally stiffened only,the present design formulas and regulations for the design of stiffeners in steel shear walls were compared.And elastic-buckling behaviors of steel plate wall with longitudinally stiffened only were analyzed in detail with 3 D finite element methods(FEM).The effects of stiffener stiffness,stiffener number and aspect ratio of steel plate were analyzed.The research results showed that the longitudinal stiffener could increase the critical stress of steel plate wall efficiency,and the elastic shear buckling coefficient of stiffened steel plate wall was affected largely by the aspect ratio of steel plate,stiffener number and the bending stiffness of stiffener.The determination criterion of threshold stiffness and formula for stiffener were proposed.The torsional stiffness of stiffener was considered in the criterion.At last,the formula of elastic buckling coefficient for steel plate wall with longitudinally stiffened only was derived.Comparison with the numerical results showed that the accuracy of the formula was good and was superior than that of formulas in literature.
References
JGJ 9998高层民用建筑钢结构技术规程[S].
[2] 童根树.钢结构设计方法[M].北京:中国建筑工业出版社,2007.
[3] Kulak G L,Kennedy. D J L,Robert G D. Steel Plate ShearWalls: An Overview[J]. Engineering Journal,2001,38(1):50-62.
[4] Alinia M M,Dastfan M. Behaviour of Thin Steel Plate Shear WallsRegarding Frame Members[J]. Journal of Constructional SteelResearch,2006,62(7):730-738.
[5] Alinia M M,Dastfan M. Cyclic Behaviour Deformability andRigidity of Stiffened Steel Shear Panels [J]. Journal ofConstruction Steel Research,2007,63(4):554-563.
[6] 郭彦林,陈国栋,缪文武.加劲钢板剪力墙弹性抗剪屈曲性能研究[J].工程力学,2006,23(2):84-91.
[7] 赵伟,杨强跃,童根树.钢板剪力墙加劲刚度及弹性临界应力研究[J].工程力学,2010(6):15-23.
[8] GB 500172003钢结构设计规范[S].
[9] Yoo C H,Lee S C. Mechanics of Web Panel PostbucklingBehavior in Shear [J]. Journal of Structural Engineering,2006,132(10):1580-1589.
Relative Articles
[1] ZHANG Feng, WANG Jian. Research on the Construction and Application of Landscape Design Evaluation Models Under the Concept of Low Impact Development [J]. INDUSTRIAL CONSTRUCTION, 2025, 55(2): 92-100. doi: 10.3724/j.gyjzG23102907
[2] ZHANG Yunlong, HE Yuzhou, DU Guofeng, ZHANG Juan. Axial Compressive Capacity Prediction of CFRST Columns Based on PSO-BP Neural Network [J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 141-148. doi: 10.3724/j.gyjzG23121108
[3] FAN Lijun. Identification of Crack in Concrete Structures Based on MobileNetV2 of Lightweight Convolutional Network [J]. INDUSTRIAL CONSTRUCTION, 2023, 53(7): 231-236. doi: 10.13204/j.gyjzG23021618
[4] LIU Jian, ZHAO Yu, WANG Fei-cheng, LIU Zhang-jiang, CENG Rong-sen, ZHOU Guan-gen, QI Yu-liang, REN Da, CHEN Yuan, XIAO Hai-peng, PENG Lin-miao. Research on Neural Network Analysis Model of Bearing Capacity of Steel Tubed Steel Reinforced Concrete Cylinder [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 147-152,120. doi: 10.13204/j.gyjzg22010519
[5] WANG Hai-bo. A Prediction Model for Bond Strength Between Concrete and Steel Bars Based on Bayesian Neural Networks [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 87-93. doi: 10.13204/j.gyjzg22031516
[6] YANG Yuan, CUI Qiandao, LIAN Jijian, LIU Hongbo, ZHOU Guangen, CHEN Zhihua. LSTM-BASED DAMAGE PREDICTION AND ASSESSMENT OF SPATIAL FRAME STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 203-208. doi: 10.13204/j.gyjzG20092308
[7] LI Rui, ZHANG Chun. RESEARCH ON STRUCTURAL DAMAGE DETECTION METHOD BASED ON ONE-DIMENSIONAL DILATED CONVOLUTION NEURAL NETWORK [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(10): 177-183. doi: 10.13204/j.gyjzg20103011
[10] Xu Qingkui, Jia Jie, Jin Laijian, Qin Daoyi. FEM ANALYSIS OF TEMPERATURE EFFECT OF THE C-SHAPED STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2014, 44(10): 82-85. doi: 10.13204/j.gyjz201410017
[11] Yang Yongxin, Zhang Yu, Guan Zengwei. STUDY OF CONSTITUTIVE RELATION AND DISTRIBUTION BETWEEN REINFORCING BAR AND CONCRETE [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(12): 113-118. doi: 10.13204/j.gyjz201312021
[12] Zhou Qiujuan, Chen Xiaoping, Zeng Lingling. RESEARCH ON NEURAL NETWORK MODEL OF DEFORMATION BEHAVIOR OF SOFT SOIL [J]. INDUSTRIAL CONSTRUCTION, 2008, 38(6): 48-53. doi: 10.13204/j.gyjz200806014
[13] Yi WeiJian, Li Peng. FINITE ELEMENT ANALYSIS OF UNIAXIAL COMPRESSION FRP-CONFINED SQUARE COLUMN SECTION STRESS DISTRIBUTION [J]. INDUSTRIAL CONSTRUCTION, 2008, 38(3): 84-89. doi: 10.13204/j.gyjz200803023
[14] Zhang Bin, Fan Jin. PREDICTING THE ULTIMATE BOND STRENGTH OF CFRP BONDED TO CONCRETE USING ARTIFICIAL NEURAL NETWORKS [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(3): 66-71,41. doi: 10.13204/j.gyjz200703017
[15] Wu Jing, Lu Jia-ping, Li Jin. RESEARCH ON TEMPERATURE STRESS OF CONCRETE FRAME STRUCTURES WITH LARGE LONGITUDINAL LENGTH [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(5): 20-22. doi: 10.13204/j.gyjz200605006
[16] Liu Di, Wang Quangfeng, Yue Qingrui, Yang Yongxin. FORECASTING THE COMPRESSION-RESISTING OF SQUARE SECTION-CONCRETE COLUMN BY BP NEURAL NETWORK [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(1): 75-78. doi: 10.13204/j.gyjz200501024
[17] Hong Jinxiang, Huang Wei, Miao Changwen. STUDY ON PREDICTION OF CONCRETE STRENGTH USING WAVELET NEURAL NETWORK [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(7): 47-49. doi: 10.13204/j.gyjz200407013
[18] Mei Libiao, Zhou Yun, Yin Yi. NONLINEAR 3D-FEM ANALYSIS OF SINGLE BEAM JOINTS OF CONCRETE FILLED STEEL TUBE COLUMN WITH STEEL BRACKETS THROUGH TUBULAR CORE [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(9): 81-83. doi: 10.13204/j.gyjz200409024
Cited by Periodical cited type(1) 1. 娄欣荣. 异形封堵墙钢支撑施工方案选择与基坑变形控制研究. 建筑施工. 2024(02): 215-217 .
Other cited types(0)
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 0 2.5 5 7.5 10 12.5
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 15.2 % FULLTEXT : 15.2 % META : 82.6 % META : 82.6 % PDF : 2.2 % PDF : 2.2 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 10.1 % 其他 : 10.1 % 其他 : 2.2 % 其他 : 2.2 % Macungie : 0.7 % Macungie : 0.7 % Mount Kisco : 2.2 % Mount Kisco : 2.2 % 上海 : 0.7 % 上海 : 0.7 % 北京 : 2.2 % 北京 : 2.2 % 十堰 : 0.7 % 十堰 : 0.7 % 南通 : 0.7 % 南通 : 0.7 % 吉安 : 0.7 % 吉安 : 0.7 % 嘉兴 : 0.7 % 嘉兴 : 0.7 % 大连 : 0.7 % 大连 : 0.7 % 天津 : 3.6 % 天津 : 3.6 % 宜昌 : 0.7 % 宜昌 : 0.7 % 宣城 : 1.4 % 宣城 : 1.4 % 常德 : 1.4 % 常德 : 1.4 % 弗吉 : 1.4 % 弗吉 : 1.4 % 张家口 : 0.7 % 张家口 : 0.7 % 扬州 : 0.7 % 扬州 : 0.7 % 晋城 : 0.7 % 晋城 : 0.7 % 武汉 : 0.7 % 武汉 : 0.7 % 沈阳 : 0.7 % 沈阳 : 0.7 % 温州 : 0.7 % 温州 : 0.7 % 漯河 : 2.2 % 漯河 : 2.2 % 芒廷维尤 : 10.1 % 芒廷维尤 : 10.1 % 芝加哥 : 0.7 % 芝加哥 : 0.7 % 西宁 : 37.7 % 西宁 : 37.7 % 贵阳 : 0.7 % 贵阳 : 0.7 % 运城 : 5.1 % 运城 : 5.1 % 郑州 : 2.2 % 郑州 : 2.2 % 重庆 : 6.5 % 重庆 : 6.5 % 其他 其他 Macungie Mount Kisco 上海 北京 十堰 南通 吉安 嘉兴 大连 天津 宜昌 宣城 常德 弗吉 张家口 扬州 晋城 武汉 沈阳 温州 漯河 芒廷维尤 芝加哥 西宁 贵阳 运城 郑州 重庆