Zhang Peng, Yang Wenrui, Deng Langni, Deng Yu, Peng Hanze, Zhang Kai. EXPERIMENTAL STUDY AND NUMERICAL SIMULATION OF CFRP ANCHOR BOND-SLIP UNDER THE SPECIAL ENVIRONMENT[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(11): 97-101,144. doi: 10.13204/j.gyjz201211021
Citation:
Zhang Peng, Yang Wenrui, Deng Langni, Deng Yu, Peng Hanze, Zhang Kai. EXPERIMENTAL STUDY AND NUMERICAL SIMULATION OF CFRP ANCHOR BOND-SLIP UNDER THE SPECIAL ENVIRONMENT[J]. INDUSTRIAL CONSTRUCTION , 2012, 42(11): 97-101,144. doi: 10.13204/j.gyjz201211021
Zhang Peng, Yang Wenrui, Deng Langni, Deng Yu, Peng Hanze, Zhang Kai. EXPERIMENTAL STUDY AND NUMERICAL SIMULATION OF CFRP ANCHOR BOND-SLIP UNDER THE SPECIAL ENVIRONMENT[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(11): 97-101,144. doi: 10.13204/j.gyjz201211021
Citation:
Zhang Peng, Yang Wenrui, Deng Langni, Deng Yu, Peng Hanze, Zhang Kai. EXPERIMENTAL STUDY AND NUMERICAL SIMULATION OF CFRP ANCHOR BOND-SLIP UNDER THE SPECIAL ENVIRONMENT[J]. INDUSTRIAL CONSTRUCTION , 2012, 42(11): 97-101,144. doi: 10.13204/j.gyjz201211021
EXPERIMENTAL STUDY AND NUMERICAL SIMULATION OF CFRP ANCHOR BOND-SLIP UNDER THE SPECIAL ENVIRONMENT
1.
Department of Civil and Architecture Engineering,Guangxi University of Technology,Liuzhou 545006,China
Rev Recd Date:
2012-01-30
Publish Date:
2012-11-20
Abstract
Through the CFRP anchor bond performance test after acid,alkali,salt,freeze-thaw cycle environmental impact,fitting different environment bond-slip relational expression and also based on the test parameters,CFRP anchor bond unit was simulated with nonlinear spring element Combin 39 of ANSYS.The fit -s curve was used for determining F-S relation parameters of the spring unit.The comparison between the simulation analysis and experimental results showed that the fit bond-slip relation curve could reflect well the CFRP reinforcement and epoxy mortar performance changes after acid,alkali,salt,freeze-thaw cycle environmental impact.Which provided a theoretical basis for performance analysis,design theory and engineering application of CFRP anchor under special environment,also provided a reference for compiling and perfecting relevant norms.
References
闫富有,贾新,袁勇.砂浆粘结GFRP 锚杆试验研究[J].工业建筑,2004,34(12): 59-60.
[2] 康清梁,钢筋混凝土有限元分析[M].北京: 中国水利水电出版社,1996.
[3] 朱伯龙,董振样.钢筋混凝土非线性分析[M].上海: 同济大学出版社,1985.
[4] 高丹盈,谢晶晶,李趁趁.纤维聚合物筋混凝土粘结性能的基本问题[J].郑州大学学报,2002,23(1): 1-5.
[5] 谢晶晶.纤维增强塑料筋锚杆锚固机理及设计方法的研究[D].郑州: 郑州大学,2002: 47-57.
[6] 高丹盈,张钢琴.维增强塑料锚杆锚固性能地数值分析[J].岩土力学与工程学报,2005,24(20): 3724-3729.
[7] GBJ 8285 普通混凝土长期性能和耐久性能试验方法[S].
[8] 张胜利.压力型CFRP 筋锚杆的锚固机理与试验研究[D].柳州: 广西工学院,2010.
[9] 张海霞,朱浮声.考虑粘结滑移本构关系的FRP 筋锚固长度[J].四川建筑科学研究,2007(4): 43-46.
[10] 姚海,崔小朝,禹海燕,等.用ANSYS 软件对锚杆- 锚固剂-岩体有限元数值模拟[J].矿业快报,2008(5): 59-61.
[11] 李围.ANSYS 土木工程应用实例[M].2 版.北京: 中国水利水电出版社,2005.
[12] 江见鲸.钢筋混凝土非线性有限元分析[M].西安: 陕西科学技术出版社,1994.
Relative Articles
[1] ZHAO Rui, LIU Qing, WANG Haihua, MA Guojie. Selection Methods of Temperature Action Values and Most Disadvantageous Working Condition of Grid Structures [J]. INDUSTRIAL CONSTRUCTION, 2023, 53(10): 88-93. doi: 10.13204/j.gyjzG21081001
[2] LI Qiang, ZHOU Ting, CHEN Zhihua, LIU Haonan. INFLUENCE OF NON-LOAD ACTION ON SUPER HIGH RISE BUILDINGS CONCRETE-FILLED SQUARE STEEL TUBE STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 150-159. doi: 10.13204/j.gyjzG19120105
[3] Li Qinshan, Wang Tiecheng, Zhao Hailong, Wang Wenxing. THE ANALYSIS AND COMPARISON OF MECHANICAL PERFORMANCE OF TWO KINDS OF SILO HORIZONTAL SUPPORTING STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2015, 45(4): 143-146. doi: 10.13204/j.gyjz201504027
[4] Lei Bing, Song Yupu. FATIGUE PERFORMANCE SIMULATION OF PARTIALLY PRESTRESSED CONCRETE BEAMS BASED ON ANSYS [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(9): 71-76,143. doi: 10.13204/j.gyjz201309013
[5] Li Kaiwen. SCHEME COMPARISON AND SELECTION OF BONDING STEEL AND CFRP CONCRETE FRAME JOINT CONTINUED PROJECTS [J]. INDUSTRIAL CONSTRUCTION, 2012, 42(3): 147-153,163. doi: 10.13204/j.gyjz201203031
[6] Chen Chanhong, Huang Ying, Shan Jian. THE FINITE ELEMENT MODEL STUDY ON THE PRE- TWISTED EULER BEAM [J]. INDUSTRIAL CONSTRUCTION, 2012, 42(5): 94-97. doi: 10.13204/j.gyjz2011205017
[7] Chen Changhong, Huang Ying, Shan Jian. THE PRE- TWISTED THIN- WALLED BEAM ELEMENT STIFFNESS MATRIX CONSIDERING THE SAINT- VENANT WARPING DEFORMATION [J]. INDUSTRIAL CONSTRUCTION, 2012, 42(4): 60-64. doi: 10.13204/j.gyjz201204013
[8] Zhang Hongmei, Liu Wei. EXPERIMENTAL STUDY ON FLEXURAL BEHAVIOR OF CHANNEL-MASONRY COMPOSITE BEAMS FOR FAST RECONSTRUCTION OF LARGE SPACE [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(5): 80-83. doi: 10.13204/j.gyjz201105018
[9] Li Ke, Chen Guoping, Tang Lan. ANALYSIS OF SEISMIC BEHAVIORS OF THE MASONRY-CONCRETE TUBE COMPOSITE STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(4): 34-37. doi: 10.13204/j.gyjz201104008
[10] Wang Quanfeng, Li Fei, Chen Haojun, Huang Yihui, Yang Yongxin, Xu Yuye. EXPERIMENTAL STUDY ON FLEXURAL BEHAVIOUR OF TIMBER BEAMS REINFORCED WITH BFRP SHEETS [J]. INDUSTRIAL CONSTRUCTION, 2010, 40(4): 126-130. doi: 10.13204/j.gyjz201004027
[11] Xiao Qi, Zhu He. RANDOM VIBRATION ANALYSIS OF DYNAMIC CHARACTERISTICS OF TALL BUILDING STRUCTURE BASED ON POWER SPECTRAL DENSITY OF WIND PRESSURE METHOD [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(9): 71-73. doi: 10.13204/j.gyjz200909014
[12] Li Zhenyu, Chen Zhihua, Rong Bin, Liu Xiliang. RESEARCH ON CRISSCROSS COMBINED COLUMN OF CONCRETE-FILLED SQUARE TUBES [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(8): 31-35,50. doi: 10.13204/j.gyjz200708009
[13] Huang Silin, Liang Xingwen, Yang Kejia. SIMULATION ANALYSIS ON BASIC BEHAVIOR OF HIGH?STRENGTH CONCRETE SHEAR WALL [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(3): 38-41,71. doi: 10.13204/j.gyjz200703011
[14] Zhang Jianrong, Liu Zhaoqiu, Hua Yijie. RESEARCH ON TEMPERATURE EFFECT COMBINATION IN THE DESIGN OF CONCRETE STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(1): 42-46,11. doi: 10.13204/j.gyjz200701012
[15] Xie Xiao-dong, Yang Na, Yang Qing-shan. PARAMETER ANALYSIS OF STEEL REDUCED WEB CONNECTION [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(5): 79-82,94. doi: 10.13204/j.gyjz200605021
[16] Huang Yi, Wang Yuanqing, Chen Hong, Shi Yongjiu. ANALYSIS OF ASEISMIC PROPERTIES OF LIGHT-WEIGHT STEEL MULTI-STOREY STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(12): 73-75. doi: 10.13204/j.gyjz200612020
[17] Geng Ou, Yuan Guanglin. TURY ON THE STRESS-STRAIN RELATIONSHIP OF CARBONATION CONCRETE AND THE FLEXURAL PERFORMANCE OF THE CARBONIZED REINFORCED CONCRETE BEAM [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(1): 44-46. doi: 10.13204/j.gyjz2006010114
[18] Zheng Yong-qian, Yang You-fu, Han Lin-hai. ANALYSIS OF THE THERMAL FIELD OF STEEL-CONCRETE COMPOSITE COLUMNS USING ANSYS [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(8): 74-77. doi: 10.13204/j.gyjz200608023
[19] Su Guozhu, Wang Yonghuan, Xu Haixiang, Xu Qing. STRUCTURAL OPTIMUM DESIGN OF ALLOTYPE HIGH TOWER [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(2): 57-59,68. doi: 10.13204/j.gyjz200502016
[20] Li Zhilei, Gan Gang, Tang Jinchun. RESEARCH ON INTERNAL FORCE AND SPATIAL DEFORMATION OF AN OVERLONG FRAME STRUCTURE UNDER TEMPERATURE EFFECT [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(4): 36-39. doi: 10.13204/j.gyjz200404011
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 0 5 10 15 20
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 12.7 % FULLTEXT : 12.7 % META : 85.5 % META : 85.5 % PDF : 1.8 % PDF : 1.8 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 10.9 % 其他 : 10.9 % Central District : 0.5 % Central District : 0.5 % 上海 : 2.7 % 上海 : 2.7 % 北京 : 1.4 % 北京 : 1.4 % 南京 : 0.9 % 南京 : 0.9 % 台州 : 0.5 % 台州 : 0.5 % 哈尔滨 : 0.5 % 哈尔滨 : 0.5 % 天津 : 1.4 % 天津 : 1.4 % 太原 : 0.9 % 太原 : 0.9 % 常州 : 0.5 % 常州 : 0.5 % 常德 : 1.4 % 常德 : 1.4 % 广州 : 0.5 % 广州 : 0.5 % 张家口 : 4.5 % 张家口 : 4.5 % 扬州 : 0.9 % 扬州 : 0.9 % 新加坡 : 1.4 % 新加坡 : 1.4 % 晋城 : 0.5 % 晋城 : 0.5 % 朝阳 : 0.9 % 朝阳 : 0.9 % 杭州 : 1.8 % 杭州 : 1.8 % 温州 : 0.5 % 温州 : 0.5 % 湖州 : 0.5 % 湖州 : 0.5 % 漯河 : 5.0 % 漯河 : 5.0 % 石家庄 : 0.5 % 石家庄 : 0.5 % 艾哈迈达巴德 : 1.4 % 艾哈迈达巴德 : 1.4 % 芒廷维尤 : 25.0 % 芒廷维尤 : 25.0 % 芝加哥 : 0.9 % 芝加哥 : 0.9 % 衢州 : 0.9 % 衢州 : 0.9 % 西宁 : 23.6 % 西宁 : 23.6 % 西安 : 1.8 % 西安 : 1.8 % 贵阳 : 0.9 % 贵阳 : 0.9 % 赤峰 : 0.5 % 赤峰 : 0.5 % 运城 : 2.7 % 运城 : 2.7 % 郑州 : 1.8 % 郑州 : 1.8 % 重庆 : 0.9 % 重庆 : 0.9 % 长沙 : 0.9 % 长沙 : 0.9 % 韶关 : 0.5 % 韶关 : 0.5 % 其他 Central District 上海 北京 南京 台州 哈尔滨 天津 太原 常州 常德 广州 张家口 扬州 新加坡 晋城 朝阳 杭州 温州 湖州 漯河 石家庄 艾哈迈达巴德 芒廷维尤 芝加哥 衢州 西宁 西安 贵阳 赤峰 运城 郑州 重庆 长沙 韶关