Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 42 Issue 9
Dec.  2014
Turn off MathJax
Article Contents
Chen Ya-qin, Zhang Hong-guang, Dang Fa-ning. APPLICATION OF DAUBECHIES CONDITIONAL WAVELET GALERKIN METHOD IN COMPUTATION OF STRUCTURAL FUNDAMENTAL COMPONENTS[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(9): 61-65. doi: 10.13204/j.gyjz201209014
Citation: Chen Ya-qin, Zhang Hong-guang, Dang Fa-ning. APPLICATION OF DAUBECHIES CONDITIONAL WAVELET GALERKIN METHOD IN COMPUTATION OF STRUCTURAL FUNDAMENTAL COMPONENTS[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(9): 61-65. doi: 10.13204/j.gyjz201209014

APPLICATION OF DAUBECHIES CONDITIONAL WAVELET GALERKIN METHOD IN COMPUTATION OF STRUCTURAL FUNDAMENTAL COMPONENTS

doi: 10.13204/j.gyjz201209014
  • Received Date: 2012-03-07
  • Publish Date: 2012-09-20
  • In order to promote the application of wavelet theory in structural computation, Daubechies wavelet Galerkin method is studied to computate the structural fundamental components.Because the displacement curve solved by the present Daubechies wavelet Galerkin method is not continuous, computation of high precision is hard to conduct.combining with generalized variational principle and Lagrangian multiplier method, Daubechies wavelet Galerkin method could be modified to form Daubechies conditional wavelet Galerkin method to be employed in structural computation.Taking the structural fundamental componentsbar and beam for examples, the construction of Daubechies conditional wavelet Galerkin method is elaborated.And the new method is compared with common FEM and present Daubechies wavelet Galerkin method at the same time.Typical computation examples were used to verify the accuracy of Daubechies conditional wavelet Galerkin method.
  • loading
  • 程正兴.小波分析与应用实例[M].西安: 西安交通大学出版社,2006: 1-8.
    [2] 何正嘉,陈雪峰,李兵,等.小波有限元理论及其工程应用[M].北京: 科学出版社,2006: 3-12.
    [3] 马军星.Daubechies 小波有限元理论及工程应用研究[D].西安: 西安交通大学,2003.
    [4] 韩建刚.小波有限元理论及其在结构工程中的应用[D].西安: 西安建筑科技大学,2003.
    : 98-118.
    [5] 周又和,王记增,郑晓静.小波伽辽金有限元法在梁板结构中的应用[J].应用数学和力学,1998,19(8): 697-706.
    [6] 刘小靖,王记增,周又和.一种适用于强非线性结构力学问题数值求解的修正小波伽辽金方法[J].固体力学学报,2011,32(3): 249-257.
    [7] Daz A R.Wavelet-Galerkin Seheme for Analysis of Large-scaleProblems on Simple Domains [J].International Journal forNumerieal Methods in Engineering,1 999,44: 1599-1616.
    [8] Kim Y Y, Jang G W.Hat Interpolation Wavelet Based-ScaleGalerkin Method for Thin-Walled Box Beam Analysis [J].International Journal for Numerical Methods in Engineering,2 002,53: 1575-1592.
    [9] 林金木.有限单元法变分原理与应用[M].长沙: 湖南大学出版社,2
    [10] 刘石泉,梁立孚.拉氏乘子法在广义变分原理和有限元素法中的应用[J].哈尔滨工程大学学报,2000,21(1): 29-32.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (60) PDF downloads(136) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return