Yang Xuejiao, Huang Wei, Hou Lina, Mu Lin, Zhang Yin. RESEARCHING ON SEISMIC PERFORMANCES AND CAPACITY OF RESISTING SHEAR OF THE UNITED LIMB ECO-COMPOSITE WALL[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(8): 27-32. doi: 10.13204/j.gyjz201208006
Citation:
Yang Xuejiao, Huang Wei, Hou Lina, Mu Lin, Zhang Yin. RESEARCHING ON SEISMIC PERFORMANCES AND CAPACITY OF RESISTING SHEAR OF THE UNITED LIMB ECO-COMPOSITE WALL[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(8): 27-32. doi: 10.13204/j.gyjz201208006
Yang Xuejiao, Huang Wei, Hou Lina, Mu Lin, Zhang Yin. RESEARCHING ON SEISMIC PERFORMANCES AND CAPACITY OF RESISTING SHEAR OF THE UNITED LIMB ECO-COMPOSITE WALL[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(8): 27-32. doi: 10.13204/j.gyjz201208006
Citation:
Yang Xuejiao, Huang Wei, Hou Lina, Mu Lin, Zhang Yin. RESEARCHING ON SEISMIC PERFORMANCES AND CAPACITY OF RESISTING SHEAR OF THE UNITED LIMB ECO-COMPOSITE WALL[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(8): 27-32. doi: 10.13204/j.gyjz201208006
By researching on the test of a 1/2-scaled model of the united limb eco-composite wall under lowfrequency cyclic loading, the failure pattern, failure process of the wall were analyzed and the aseismatic capacity ofthe bearing capacity, ductility, deformation and energy dissipation was researched.A non-linear finite element modelof the wall was set up in allusion to the inclined section shear capacity of united limb eco-composite wall, with whichan analysis of different single-factor changes was done.Experimental results and theoretical research show that incontrast with single wall, the united limb eco-composite wall has better seismic performance.The specificperformance is that bearing capacity, deformation and ductility of the wall are increased, and it has a better energydissipation and anti-collapse capacity.According to the analysis of the oblique section bearing capacity factors, it wasput forward the equation of oblique section ultimate bearing capacity of the united limb eco-composite wall, and thescope of application of the formula was also given.The structural performance under load would be better factuallyreflected.It can be applied to practical projects.
[5] Hsuan-Teh Hu,Fu-Ming Lin.Nonlinear Finite Element Analysisof Reinforced Concrete Beams Strengthened by Fiber-ReinforcedPlastics[J].Composite Structures,2004(63):271-281.
[6] Gopalaratnam V S,Shah SP,Batson G B,et al.FractureToughness of Fiber Reinforced Concrete[J].ACI Mater J,1991,88(4):39-53.
[7] Alemdar Bayraktar.Experimental and Finite Elementanalysis onthe Steel Fiber-Reinforced Concrete(SFRC)Beams UltimateBehavior[J].Construction and Building Materials,2009(23):1064-1077.