Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 42 Issue 4
Dec.  2014
Turn off MathJax
Article Contents
Chen Changhong, Huang Ying, Shan Jian. THE PRE- TWISTED THIN- WALLED BEAM ELEMENT STIFFNESS MATRIX CONSIDERING THE SAINT- VENANT WARPING DEFORMATION[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(4): 60-64. doi: 10.13204/j.gyjz201204013
Citation: Chen Changhong, Huang Ying, Shan Jian. THE PRE- TWISTED THIN- WALLED BEAM ELEMENT STIFFNESS MATRIX CONSIDERING THE SAINT- VENANT WARPING DEFORMATION[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(4): 60-64. doi: 10.13204/j.gyjz201204013

THE PRE- TWISTED THIN- WALLED BEAM ELEMENT STIFFNESS MATRIX CONSIDERING THE SAINT- VENANT WARPING DEFORMATION

doi: 10.13204/j.gyjz201204013
  • Received Date: 2011-11-23
  • Publish Date: 2012-04-20
  • Based on the traditional mechanical model of thin-walled straight beam,it is conducted a systematic analysis and research on the pre-twisted thin-walled beam finite element numerical model. Firstly,based on the geometric deformation differential relationship,it is deduced the pre-twisted thin-walled beam Saint-Venant warping strain. According to traditional thin-walled straight beam finite element mechanical model,it is also established its finite element stiffness matrix considering the Saint-Venant warping deformations. Finally,by calculating the pre- twisted elliptical section beam example,and contrasting three-dimensional solid finite element using ANSYS,the comparative analysis results show that pre-twisted thin-walled beam element stiffness matrix considering Saint-Venant warping deformation has a good accuracy.
  • loading
  • Shadnam M R,Abbasnia R. Stability of Pretwisted Beams in CrossBracings[J]. Applied Mechanics and Technical Physics,2002,43(2): 328-335.
    [2] 陈昌宏,单建,黄莺. 初始扭转轴压杆弹性弯扭屈曲性能研究[J]. 工程力学,2009,26(6):166-171.
    [3] 包世华,周坚. 薄壁杆件结构力学[M]. 北京:中国建筑工业出版社,1991:417-427.
    [4] 吴家龙. 弹性力学[M]. 上海:同济大学出版社,1993:40-42.
    [5] 杜庆华. 工程力学手册[M]. 北京:高等教育出版社,1994:942-949.
    [6] 王勖成,邵敏. 有限单元法基本原理和数值方法[M]. 北京:清华大学出版社,1997:280-292.
    [7] Petrov E,Geradin M. Finite Element Theory for Curved andTwisted Beams Based on Exact Solutions for Three DimensionalSolids [J]. Computer Methods in Applied Mechanics andEngineering,1998 (165): 43-127.
    [8] Zupan D,Saje M. OnA proposed Standard Set of Problems to Test Finite Element Accuracy: the Twisted Beam [J]. Finite Elements in Analysis and Design,2004(40):1445-1451.
    [9] Yardimoglu B,Yildirim T. Finite Element Model for Vibration Analysis of Pre-Twisted Timoshenko Beam [J]. Journal of Soundand Vibration,2004,273: 741-754.
    [10] ANSYS Inc. ANSYS APDL Programmer's Guide Release 7. 0[M]. 1999.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (195) PDF downloads(122) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return