Zhang Wenqi, Zhang Yong. ELASTIC BUCKLING OF WEB IN I-SECTION STEEL ARCH STRUCTURE SUBJECTED TO UNIFORMLY DISTRIBUTED RADIAL LOAD[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(2): 90-96,52. doi: 10.13204/j.gyjz201102022
Citation:
Zhang Wenqi, Zhang Yong. ELASTIC BUCKLING OF WEB IN I-SECTION STEEL ARCH STRUCTURE SUBJECTED TO UNIFORMLY DISTRIBUTED RADIAL LOAD[J]. INDUSTRIAL CONSTRUCTION , 2011, 41(2): 90-96,52. doi: 10.13204/j.gyjz201102022
Zhang Wenqi, Zhang Yong. ELASTIC BUCKLING OF WEB IN I-SECTION STEEL ARCH STRUCTURE SUBJECTED TO UNIFORMLY DISTRIBUTED RADIAL LOAD[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(2): 90-96,52. doi: 10.13204/j.gyjz201102022
Citation:
Zhang Wenqi, Zhang Yong. ELASTIC BUCKLING OF WEB IN I-SECTION STEEL ARCH STRUCTURE SUBJECTED TO UNIFORMLY DISTRIBUTED RADIAL LOAD[J]. INDUSTRIAL CONSTRUCTION , 2011, 41(2): 90-96,52. doi: 10.13204/j.gyjz201102022
ELASTIC BUCKLING OF WEB IN I-SECTION STEEL ARCH STRUCTURE SUBJECTED TO UNIFORMLY DISTRIBUTED RADIAL LOAD
Received Date: 2010-11-25
Publish Date:
2011-02-20
Abstract
The I-section steel arch structure has been applied widely in kinds of projects because of its beautiful shape,good mechanical property and simple manufacturing.However,the technical specification for steel arch structure has not been put forward yet,and the current codes and technical regulations for design of steel structures include no technology items for steel arch structure.Compared to the web of straight beam and column,the normal stress and shear stress also exist in welding I-section steel arch,but the most difference between them is the geometrical shape of the web,that for straight beam and column is rectangular while the one for welded I-section steel arch is arc,which makes the behaviors different.When an pin-ended arch is subjected to a radial load uniformly distributed around the arch axis,the load primarily produces uniform axial compression.The models simulating the I-section steel arch subjected to uniformly distributed radial load were built,with which the elastic buckling coefficients of single archy plates were obtained under the conditions of simply supported and fixedly supported loading side,and the related formulas were obtained through data fitting referencing the theory of elastic buckling of rectangle plate.Then,the elastic buckling coefficients and the related formulas of I-section steel arch were obtained considering the arbitrary degree rotational restraints of flanges to webs.
References
Pi Y L, Trahair N S.Flexural-Torsional Buckling of Arches[J].Journal of Structural Engineering, 1987, 113(4):889-906;
[2] Pi Y L, Trahair N S.Flexural-Torsional Buckling Tests of Arches[J].Journal of Structural Engineering, 1987, 113(7):1433-1443;
[3] Pi Y L, Trahair N S.In-Plane Inelastic Buckling and Strengths ofSteel Arches[J].Journal of Structural Engineering, 1996, 122(7):734-747;
[4] 童根树, 许强.薄壁曲梁线性和非线性分析理论[M].北京:科学出版社, 2001;
[5] 陈骥.钢结构稳定理论与设计[M].北京:科学出版社, 2001;
[6] Bleich F.Buckling Strength of Metal Structures[M].New York:McGraw-Hill, 1952;
[7] Allen H G, Bulson P S.Background to Buckling[M].NewYork:McGraw-Hill, 1980;
[8] 童根树.钢结构的平面外稳定[M].北京:中国建筑工业出版社, 2007;
[9] 任涛.工字梁腹板在局部承压和剪力作用下的弹性屈曲及极限承载力[D].杭州:浙江大学, 2005;
[10] 任涛, 童根树.小片荷载作用下工字形梁腹板的弹性屈曲分析[J].钢结构, 2004(增刊):323-331;
[11] 童根树, 任涛.工字梁的抗剪极限承载力[J].土木工程学报, 2006, 39(8):57-64;
[12] 金阳, 童根树.考虑翼缘约束的工字形截面腹板的弹性屈曲[J].浙江大学学报, 2009, 43(10):1883-1891.
Relative Articles
[1] WANG Qingli, ZHAO Jie, PENG Kuan. Tests on Mechanical Properties of Concrete-Filled Double-Skin Circular Steel Tubes Connected by Thread Under Axial Compression [J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 13-22. doi: 10.3724/j.gyjzG22102805
[2] CHEN Jingwei, WANG Jingfeng, SU Hang, HU Ziming, CHENG Qianyong. Performance and Numerical Analysis of Eccentrically-Loaded Concrete-Filled Double-Skin Elliptical Steel Tubular Short Columns [J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 156-167. doi: 10.3724/j.gyjzG23122115
[3] LI Xinjie, WANG Weiyong. Research on Mechanical Properties of Concrete-Filled Double-Skin Circular Steel Tubular Columns Stiffened by Perforated Steel Plates Under Axial Compression [J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 1-12. doi: 10.3724/j.gyjzG23071702
[4] ZHANG Ying, WANG Rui, ZHAO Hui, AN Guoqing. Mechanical Properties of Octagonal Hollow Concrete Filled Steel Tube Short Columns Under Axial Compression [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 113-119. doi: 10.13204/j.gyjzG20122411
[5] ZHANG Yufen, ZHANG Yan, JIA Hongxin. Analysis and Calculations for Bearing Capacity of New Composite CFST Pier Columns Under Axial Compression [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(12): 128-135,155. doi: 10.13204/j.gyjzG21020601
[6] ZHANG Zhengtao, REN Qingxin, REN Debin, YANG Juncai. STUDY ON AXIAL COMPRESSION PERFORMANCES OF CONCRETE-ENCASED CONCRETE-FILLED STEEL-TUBE STUB COLUMNS STRENGTHENED WITH EXTERNAL STEEL FRAMES AFTER EXPOSURE TO FIRE [J]. INDUSTRIAL CONSTRUCTION, 2020, 50(10): 187-193. doi: 10.13204/j.gyjzG20011609
[11] Wang Qingli, Li Ruilin, Li Qinggang, Wang Yue. STATIC PERFORMANCE OF THE HIGH-PERFORMANCE CONCRETE FILLED STEEL TUBULAR STUB COLUMN(Ⅱ): MECHANISM ANALYSIS AND LOAD BEARING CAPACITY [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(3): 8-12. doi: 10.13204/j.gyjz201303002
[12] Ren Qingxin, LüYanbo, Jia Lianguang, Mo Yaqing. MECHANICAL BEHAVIOR OF CONICAL CONCRETE-FILLED DOUBLE-SKIN STEEL TUBULAR STUB COLUMNS WITH ENDPLATE UNDER AXIAL PARTIAL COMPRESSION [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 149-155. doi: 10.13204/j.gyjz201304031
[13] Xie Li, Chen Mengcheng, Huang Hong. EXPERIMENTAL STUDY ON RECTANGULAR CONCRETE-FILLED DOUBLE-SKIN STEEL TUBES SUBJECTED TO ECCENTRIC COMPRESSIVE LOAD [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(5): 128-131. doi: 10.13204/j.gyjz201305027
[14] Ren Qingxin, Mo Yaqing, Jia Lianguang, LüYanbo. ANALYSIS OF CONICAL DOUBLE SKIN STEEL TUBES CONFINED CONCRETE STUB COLUMNS SUBJECTED TO AXIAL PARTIAL COMPRESSION [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 144-148. doi: 10.13204/j.gyjz201304030
[15] Yang Junjie, Gao Zijun, Wu Zuxian. EXPERIMENTAL STUDY OF CONCRETE-FILLED DOUBLE SKIN STEEL TUBULAR COLUMNS WITH OCTAGON SECTION UNDER ECCENTRIC LOADS [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(3): 116-118,35. doi: 10.13204/j.gyjz200903030
[16] Yu Xin, Tao Zhong. RESIDUAL STRENGTH OF CONCRETE-FILLED DOUBLE-SKIN STEEL TUBULAR STUB COLUMNS AFTER EXPOSURE TO FIRE [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 9-13. doi: 10.13204/j.gyjz200904003
[17] Li Yong-jin, Tao Zhong. BEHAVIOR OF CONCRETE-FILLED DOUBLE SKIN STEEL TUBULAR COLUMNS SUBJECTED TO LONG-TERM SUSTAINED LOADS [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(12): 22-27. doi: 10.13204/j.gyjz200712005
[18] Huang Hong Tao Zhong, . MECHANISM OF CONCRETE-FILLED DOUBLE-SKIN STEEL TUBULAR COLUMNS (CHS INNER AND CHS OUTER) SUBJECTED TO AXIAL COMPRESSION [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(11): 11-14,36. doi: 10.13204/j.gyjz200611003
[19] Guo Lanhui, Zhang Sumei, Wang Yuyin, Liu Jiepeng. EXPERIMENTAL AND ANALYTICAL RESEARCH ON AXIALLY LOADED SLENDER HIGH STRENGTH CONCRETE-FILLED RHS TUBES [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(3): 75-79. doi: 10.13204/j.gyjz200503026
Cited by Periodical cited type(4) 1. 王晓初,杨玉琪,刘晓,回彦川,崔洧瑄,袁立灏,朱俊,侯东序. 火灾后高强钢管混凝土柱轴压的参数化分析. 沈阳大学学报(自然科学版). 2024(01): 61-67+76 . 2. 崔闯,杨正祥,王昊,张清华,卜一之,夏嵩. 桥梁抗爆与抗火2020年度研究进展. 土木与环境工程学报(中英文). 2021(S1): 207-221 . 3. 丛术平,丛炜,王继升,彭敏. 基于相同用钢量的双圆钢管混凝土短柱轴压试验. 中国科技论文. 2020(10): 1150-1156 . 4. 张正涛,任庆新,任德斌,杨军彩. 外包钢加固火灾后钢管混凝土叠合短柱轴压性能研究. 工业建筑. 2020(10): 187-193 . 本站查看
Other cited types(9)
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-04 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 0 1 2 3 4 5 6
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 12.9 % FULLTEXT : 12.9 % META : 87.1 % META : 87.1 % FULLTEXT META
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 18.6 % 其他 : 18.6 % China : 1.4 % China : 1.4 % 北京 : 5.7 % 北京 : 5.7 % 台州 : 2.9 % 台州 : 2.9 % 嘉兴 : 1.4 % 嘉兴 : 1.4 % 张家口 : 4.3 % 张家口 : 4.3 % 扬州 : 1.4 % 扬州 : 1.4 % 朝阳 : 1.4 % 朝阳 : 1.4 % 沈阳 : 4.3 % 沈阳 : 4.3 % 湖州 : 4.3 % 湖州 : 4.3 % 漯河 : 5.7 % 漯河 : 5.7 % 石家庄 : 2.9 % 石家庄 : 2.9 % 芒廷维尤 : 30.0 % 芒廷维尤 : 30.0 % 芝加哥 : 1.4 % 芝加哥 : 1.4 % 西宁 : 10.0 % 西宁 : 10.0 % 运城 : 1.4 % 运城 : 1.4 % 重庆 : 1.4 % 重庆 : 1.4 % 金华 : 1.4 % 金华 : 1.4 % 其他 China 北京 台州 嘉兴 张家口 扬州 朝阳 沈阳 湖州 漯河 石家庄 芒廷维尤 芝加哥 西宁 运城 重庆 金华