Yang Yinghua, Wei Jun, Feng Zhen, Chen Chuanzheng. STUDY OF WIND-INDUCED VIBRATION RESPONSES AND WIND-INDUCED VIBRATION FACTOR FOR LONG-SPAN GABLE ROOFS SUPPORTED BY STEEL TRUSSES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(1): 124-129. doi: 10.13204/j.gyjz201101028
Citation:
Yang Yinghua, Wei Jun, Feng Zhen, Chen Chuanzheng. STUDY OF WIND-INDUCED VIBRATION RESPONSES AND WIND-INDUCED VIBRATION FACTOR FOR LONG-SPAN GABLE ROOFS SUPPORTED BY STEEL TRUSSES[J]. INDUSTRIAL CONSTRUCTION , 2011, 41(1): 124-129. doi: 10.13204/j.gyjz201101028
Yang Yinghua, Wei Jun, Feng Zhen, Chen Chuanzheng. STUDY OF WIND-INDUCED VIBRATION RESPONSES AND WIND-INDUCED VIBRATION FACTOR FOR LONG-SPAN GABLE ROOFS SUPPORTED BY STEEL TRUSSES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(1): 124-129. doi: 10.13204/j.gyjz201101028
Citation:
Yang Yinghua, Wei Jun, Feng Zhen, Chen Chuanzheng. STUDY OF WIND-INDUCED VIBRATION RESPONSES AND WIND-INDUCED VIBRATION FACTOR FOR LONG-SPAN GABLE ROOFS SUPPORTED BY STEEL TRUSSES[J]. INDUSTRIAL CONSTRUCTION , 2011, 41(1): 124-129. doi: 10.13204/j.gyjz201101028
STUDY OF WIND-INDUCED VIBRATION RESPONSES AND WIND-INDUCED VIBRATION FACTOR FOR LONG-SPAN GABLE ROOFS SUPPORTED BY STEEL TRUSSES
1.
1. Xi’an University of Architecture and Technology,Xi’an 710055,China;
2.
2. Xi’an Branch of SCIEG Beijing Huayu Engineering Co. Ltd,Xi’an 710061,China;
3.
3. Northwest Electric Power Design Institute,Xi’an 710075,China
Received Date: 2010-07-05
Publish Date:
2011-01-20
Abstract
Based on random vibration theory,a wind power spectral analysis method in the frequency domain was used to analyze the wind induced vibration of long-span gable roofs supported by steel truss in this paper.The Davenport wind spectrum was used to calculate wind-induced vibration responses and wind vibration factor of the gable roofs.The influences of parameters such as the basic wind pressure,span and weight of the roof,damping ratio,terrain categories and support restraints,and etc on the wind vibration factor were discussed.Using results of the parametric analysis,a practical wind-induced vibration factor formula for long-span steel truss supporting gable roofs was summarized and recommeded.
References
[2] 杨应华, 冯真, 陈传铮.大跨度梯形钢屋架双坡屋盖风振系数研究[J].工业建筑, 2009, 39(增刊).
GB 500092001建筑结构荷载规范[S].
[3] 庄表中, 梁以德, 张佑启.结构随机振动[M].北京:国防工业出版社, 1995.
[4] 张相庭.结构风工程理论规范实践[M].北京:中国建筑工业出版社, 2006.
[5] 张相庭.结构风压和风振计算[M].上海:同济大学出版社, 1985.
[6] 陆峰.大跨度平屋面结构的风振响应和风振系数研究[D].杭州:浙江大学, 2001.
[7] 05G511梯形钢屋架[S].
[8] 05G515轻型屋面梯形钢屋架[S].
Relative Articles
[1] ZHOU Meng, ZHANG Yiyao, WU Bin. Wind-Induced Vibration Response Analysis of Overhead Transmission Lines Under Icing Condition [J]. INDUSTRIAL CONSTRUCTION, 2023, 53(4): 8-14. doi: 10.13204/j.gyjzG21070113
[2] CAO Meigen, ZHANG Ruoyu, ZHU Yunxiang, WANG Yu, KONG Fanfang, PAN Yiwei. Research on Wind Resistant Reinforcement of In-Plane Cables of Transmission Line Tower and Influence of Design Parameters [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 48-56.
[3] JIN Xin, HUANG Dong-mei, YAO Ming-zhi, LI Xiao-han. Investigation of Influence of Fishscale Cladding and Aerodynamic Interference on Wind Load and Wind-Induced Response of a Chimney [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 178-185. doi: 10.13204/j.gyjzg21091006
[4] LUO Kerong, YU Liang, SHU Ganping, LI Buhui, NING Shuaipeng. Analysis of Wind-Induced Response of a 500 kV Long-Span Transmission Tower-Line System Crossing the Yangtze River [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 1-8. doi: 10.13204/j.gyjzG21121615
[5] XIA Liang, ZHANG Mingshan, LI Benyue. WIND-INDUCED VIBRATION ANALYSIS AND WIND-RESISTANT DESIGN OF A CANTILEVERED STRING STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 93-98,195. doi: 10.13204/j.gyjzG20032402
[6] NIE Zhulin, OU Tong, XIN Zhiyong, ZHU Yong, WANG Dayang. OPTIMIZATION OF WIND VIBRATION RESPONSES OF BUILDING STRUCTURES PLANTED ARBORS ON ROOFS [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 121-127. doi: 10.13204/j.gyjzG20050604
[7] HAN Miao, LI Shuangchi, DU Hongkai, LI Wanjun, HAN Rong. ANALYSIS ON WIND VIBRATION RESPONSE AND DAMPING VIBRATION REDUCTION OF LONG-SPAN GRID STRUCTURES [J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 114-120. doi: 10.13204/j.gyjz202005019
[12] Zhang Mingliang, Li Qiusheng. EXPERIMENTAL INVESTIGATION ON WIND LOAD CHARACTERISTICS OF ROOF STRUCTURE FOR JILIN RAILWAY STATION [J]. INDUSTRIAL CONSTRUCTION, 2012, 42(4): 123-130,30. doi: 10.13204/j.gyjz201204026
[13] Shu Xingping, Yan Xinghua, Zou Hao. SIMULATION OF FLUCTUATING WIND LOAD ON ANGLE-STEEL COMMUNICATION TOWER AND ANALYSIS OF WIND-INDUCED VIBRATION RESPONSES [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(4): 119-123. doi: 10.13204/j.gyjz201104025
[14] Zhang Jian-sheng, Wu Yue, Shen Shi-zhao. STUDY ON WIND-INDUCED VIBRATION OF SINGLE-LAYER CYLINDRICAL RETICULATED SHELL STRUCTURES [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(10): 69-71. doi: 10.13204/j.gyjz200610019
[15] Yang Dongsheng, Lan Zongjian. STUDY ON WIND-INDUCED RESPONSE OF MULTIFUNCTIONAL VIBRATION-ABSORPTION MEGAFRAME STRUCTURES [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(1): 30-32. doi: 10.13204/j.gyjz200501009
[16] Wang Heng, Sun Bingnan, Lou Wenjuan, Shen Guohui, . CALCULATION OF WIND-INDUCED VIBRATION FACTOR OF ROOF FOR TAIZHOU STADIUM [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(4): 82-84,94. doi: 10.13204/j.gyjz200504024
[17] Wang Yuanqing, Ren Zhihong, Shi Yongjiu, Wu Lili. WIND VIBRATION ANALYSIS OF FISH-BELLIED FLEXIBLE SUPPORTING SYSTEM FOR POINT-SUPPORTED GLASS BUILDING [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(2): 23-26. doi: 10.13204/j.gyjz200502006
[18] Zhang Zengdang, Chen Shuifu. WIND-INDUCED VIBRATION RESPONSE ANALYSIS AND STRUCTURAL SCHEME APPRAISAL FOR A THREE-PIPE RC CHIMNEY [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(5): 37-39. doi: 10.13204/j.gyjz200405012
Cited by Periodical cited type(11) 1. 迟曼曼,贺东青,李衫元. 基于密集配筋下的SFRSCC力学性能实验研究. 河南大学学报(自然科学版). 2022(05): 602-609 . 2. 刘俊霞,陶宏利,杨艳蒙,程学磊. 干湿循环-硫酸盐侵蚀对钢纤维SCC弯曲性能的影响研究. 水利水电技术(中英文). 2022(12): 118-124 . 3. 陈新明,史玉良,焦华喆,靳翔飞,吴亚闯,谭毅. 基于搜索锥算法的纤维分布特征及对BFRC的增强机制. 材料导报. 2021(04): 4061-4066 . 4. 卿龙邦,杨卓凡,慕儒. 龄期对定向钢纤维增强水泥基复合材料断裂性能的影响. 工业建筑. 2021(01): 146-151 . 本站查看 5. 梁海军,许家文. 钢-聚丙烯纤维橡胶混凝土力学性能试验研究. 塑料工业. 2021(06): 94-99 . 6. 郭志强. 不同钢纤维含量对超高性能混凝土结构的抗弯性能影响研究. 四川建筑科学研究. 2020(02): 95-102 . 7. 杨睿. 不同钢筋强度和钢纤维类型的混凝土梁抗弯性能试验研究. 新余学院学报. 2020(02): 25-31 . 8. 朱麒璇,刘晨曦,梁丽青,武丹丹,王雯倩. 钢纤维混凝土在盾构隧道管片中的应用综述. 四川建筑. 2020(06): 105-108 . 9. 李妍,王小鹏,贺柱国,方权. 工业废旧纤维增强水泥基复合材料抗剪性能试验研究. 工业建筑. 2020(12): 88-92+159 . 本站查看 10. 崔宏环,王文涛,崔乃夫,杨兴然,何静云,张振寰. 钢纤维混凝土桩水平承载特性试验研究. 北京交通大学学报. 2019(03): 130-136 . 11. 李英娜,张井财,张春巍,薛启超. 钢纤维混凝土的弯曲性能试验研究. 混凝土. 2018(08): 74-78 .
Other cited types(17)
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 0 2 4 6 8
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 14.6 % FULLTEXT : 14.6 % META : 85.4 % META : 85.4 % FULLTEXT META
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 19.5 % 其他 : 19.5 % 上海 : 4.9 % 上海 : 4.9 % 北京 : 14.6 % 北京 : 14.6 % 天津 : 2.4 % 天津 : 2.4 % 张家口 : 2.4 % 张家口 : 2.4 % 扬州 : 4.9 % 扬州 : 4.9 % 芒廷维尤 : 36.6 % 芒廷维尤 : 36.6 % 西宁 : 9.8 % 西宁 : 9.8 % 西雅图 : 2.4 % 西雅图 : 2.4 % 重庆 : 2.4 % 重庆 : 2.4 % 其他 上海 北京 天津 张家口 扬州 芒廷维尤 西宁 西雅图 重庆