Li Jinbao. RECTIFICATION OF AND REINFORCING TECHNOLOGY A LOW HIGH RISE BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(3): 128-134. doi: 10.13204/j.gyjz201003028
Citation:
Li Jinbao. RECTIFICATION OF AND REINFORCING TECHNOLOGY A LOW HIGH RISE BUILDING[J]. INDUSTRIAL CONSTRUCTION , 2010, 40(3): 128-134. doi: 10.13204/j.gyjz201003028
Li Jinbao. RECTIFICATION OF AND REINFORCING TECHNOLOGY A LOW HIGH RISE BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(3): 128-134. doi: 10.13204/j.gyjz201003028
Citation:
Li Jinbao. RECTIFICATION OF AND REINFORCING TECHNOLOGY A LOW HIGH RISE BUILDING[J]. INDUSTRIAL CONSTRUCTION , 2010, 40(3): 128-134. doi: 10.13204/j.gyjz201003028
RECTIFICATION OF AND REINFORCING TECHNOLOGY A LOW HIGH RISE BUILDING
Received Date: 2009-10-29
Publish Date:
2010-03-20
Abstract
An overall housing tilt to the northeast occurred on a 11-story reinforced concrete building,due to uneven settlement of its foundation,and the maximum cumulative settlement amount of 111. 33 mm occurred at the northeast point of the building,maximum tilt amount was 6 ,which could not meet the requirements of the code,so a tilt- correction was needed. In conjunction with geologic conditions of the housing and the situation of superstructure,a certain number of static bolt-pressing piles were set on the north side to stabilize the housing settlement; then the disturbing holes were arranged on south side of the building to disturb the gravel layer at the bottom of the raft foundation,so that housing south was forced to lower,so as to achieve the purpose of correcting tilt,after returning to the design value of the building,the pressure grouting was used to reinforce the foundation. In this paper,analysis of the causes of the housing tilt,tilt correction program selection and correct operation,as well as its design and construction were described in detail.
References
[2] GB 500072002建筑地基基础设计规范[S].
CECS 225:2007建筑物移位、纠倾、增层改造技术规范[S].
[3] JGJ 792002建筑地基处理技术规范[S].
[4] JGJ 1232000既有建筑地基基础加固技术规范[S].
[5] JGJ 9494建筑桩基技术规范[S].
[6] JGJ/T 897建筑变形测量规程[S].
[7] GB 503672006混凝土结构加固设计规范[S].
[8] 张翼凌,李今保.某工程二层柱置换混凝土加固施工技术[J].工业建筑,2006,36(4):88-90.
[9] 李今保.计算机应变控制梁柱托换方法.中国,200710022247.3[P].2007.
Relative Articles
[1] LYU Henglin, JING Yanrui, MOU Xingyu, ZHANG Chen. Research on Seismic Performance of Beam-Column Joints with Reinforced Webs Connected with Fully Bolted Double-Angle Steel [J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 138-146. doi: 10.3724/j.gyjzG21110115
[2] WANG Liping, LIU Mei, LEI Honggang. Research Progress of Exterior Wallboards for Prefabricated Steel Structures [J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 198-208. doi: 10.3724/j.gyjzG23112502
[3] ZHANG Zeyu, ZENG Lijing, WANG Yuedong, HOU Zhaoxin, LIU Xuechun, ZHANG Ailin, LI Weinan. Research on Mechanical Properties of Prefabricated Z-Shaped Steel Beam-to-Column Connections [J]. INDUSTRIAL CONSTRUCTION, 2024, 54(8): 62-69. doi: 10.3724/j.gyjzG24022007
[4] HE Qingqing, XUE Chen, LI Ran, LAN Tao, MEN Jinjie, ZHAO Tian. Numerical Simulation Analysis on Temperature Fields of Prefabricated Box-Plate Composite Walls [J]. INDUSTRIAL CONSTRUCTION, 2023, 53(1): 30-40. doi: 10.13204/j.gyjzG20042005
[5] XUE Chen, QIN Guangchong, LAN Tao, YU Zhixiang, LI Zexu. Thermo-Mechanical Coupling Response Analysis of Prefabricated Box-Plate Steel Structures Under Fire [J]. INDUSTRIAL CONSTRUCTION, 2023, 53(1): 20-29. doi: 10.13204/j.gyjzG22041413
[6] BAI Zhengxian, BAI Yaritu, LIU Xuechun. MECHANICAL PROPERTIES ANALYSIS OF Z-SHAPED SPLICING JOINT OF CONCRETE- FILLED L-SHAPED STEEL TUBULAR COLUMN AND H-SECTION BEAM [J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 153-161,194. doi: 10.13204/j.gyjzG20020603
[7] LI Guochang, SONG Chengxi, YANG Zhijian. FINITE ELEMENT ANALYSIS ON BEARING PERFORMANCES OF A NEW CONNECTION FOR PREFABRICATED FLOOR SLABS AND STEEL BEAMS [J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 126-134. doi: 10.13204/j.gyjzG20051107
[8] LI Weinan, YANG Xiao, WANG Yuedong, SHANG Renjie, GUI Yufei, HOU Zhaoxin. APPLICATION OF COMPOSITE THERMAL ENCLOSURE WALLBOARD IN A PREFABRICATED STEEL STRUCTURE BUILDING [J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 147-150,123. doi: 10.13204/j.gyjz202003025
[10] Shu Xingping Zhang Wenxian Lu Beirong, . PUSHOVER ANALYSIS OF PREFABRICATED STEEL FRAME STRUCTURE WITH INCLINED SUPPORT JOINTS [J]. INDUSTRIAL CONSTRUCTION, 2015, 45(10): 7-12. doi: 10.13204/j.gyjz201510002
[11] Shu Xingping He Qingrong Lu Beirong, . ANALYSIS OF ALONG-WIND COMFORT FOR XIAO TIANCHENG FABRICATED TALL STEEL STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2015, 45(10): 31-35. doi: 10.13204/j.gyjz201510006
[12] Zhang Ailin, Hui Yi, Liu Xuechun. SEISMIC PERFORMANCE RESEARCH ON BEAM-COLUMN SPLICE JOINTS OF PREFABRICATED STEEL FRAMED STRUCTURES WITH BRACES [J]. INDUSTRIAL CONSTRUCTION, 2014, 44(08): 35-38.
[13] Ni Zhen, Zhao Yue, Liu Xuechun, Zhang Ailin. RESEARCH ON BEARING CAPACITY PERFORMANCE OF THE TRUSS GIRDER IN THE MODULAR PREFABRICATED STEEL STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2014, 44(08): 14-18.
[14] Zhang Ailin, Tian Chen, Liu Xuechun. EFFECTIVE LENGTH ANALYSIS OF TRUSS BEAM WEB MEMBER OF INDUSTRIAL PREFABRICATED HIGH-RISE STEEL STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2014, 44(12): 128-131. doi: 10.13204/j.gyjz2001412021
[15] Liu Xuechun, Xu Axin, Ni Zhen, Zhang Ailin. ANALYSIS OF THE LIMIT BEARING CAPACITY AND SEISMIC PERFORMANCE OF TYPICAL JOINT OF TRUSS-BEAM AND COLUMN IN FABRICATED HIGH-RISE STEEL STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2014, 44(08): 23-26.
[16] Shen Yuekui, Wang Zhangping, Peng Chengbo, Wu Bo. FIRE TEMPERATURE FIELDS AND SMOKE DISTRIBUTION OF RECTANGULAR PLANE AIR-SUPPORTED MEMBRANE STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2014, 44(09): 78-82.
[17] Wang Weihua, Tao Zhong. TESTS ON TEMPERATURE FIELDS OF CONCRETE-FILLED STEEL TUBULAR COLUMN TO REINFORCED CONCRETE BEAM FRAMES UNDER FIRE [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 18-21. doi: 10.13204/j.gyjz200904005
[18] Jiang Ying, Han Linhai. FINITE ELEMENT ANALYSIS ON THE TEMPERATURE FIELD OF CONCRETE FILLED STEEL TUBULAR COLUMN-BEAM JOINTS IN FIRE [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 22-27. doi: 10.13204/j.gyjz200904006
Cited by Periodical cited type(2) 1. 蒲龙柱. 大型厂房火灾后钢结构性能检测分析研究. 江西建材. 2024(08): 122-124 . 2. 薛辰,秦广冲,兰涛,余志祥,李泽旭. 箱板装配式钢结构火灾下的热力耦合响应分析. 工业建筑. 2023(01): 20-29 . 本站查看
Other cited types(0)
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 2025-05 0 2.5 5 7.5 10 12.5
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 12.3 % FULLTEXT : 12.3 % META : 85.2 % META : 85.2 % PDF : 2.6 % PDF : 2.6 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 20.6 % 其他 : 20.6 % 其他 : 1.3 % 其他 : 1.3 % 上海 : 5.8 % 上海 : 5.8 % 临汾 : 0.6 % 临汾 : 0.6 % 保定 : 0.6 % 保定 : 0.6 % 北京 : 1.9 % 北京 : 1.9 % 十堰 : 0.6 % 十堰 : 0.6 % 南宁 : 3.9 % 南宁 : 3.9 % 密蘇里城 : 1.9 % 密蘇里城 : 1.9 % 布雷登顿 : 0.6 % 布雷登顿 : 0.6 % 常德 : 0.6 % 常德 : 0.6 % 广州 : 3.9 % 广州 : 3.9 % 张家口 : 2.6 % 张家口 : 2.6 % 成都 : 0.6 % 成都 : 0.6 % 拉斯维加斯 : 0.6 % 拉斯维加斯 : 0.6 % 昆明 : 0.6 % 昆明 : 0.6 % 晋城 : 0.6 % 晋城 : 0.6 % 武汉 : 0.6 % 武汉 : 0.6 % 济南 : 1.3 % 济南 : 1.3 % 芒廷维尤 : 14.2 % 芒廷维尤 : 14.2 % 芝加哥 : 1.3 % 芝加哥 : 1.3 % 西宁 : 18.1 % 西宁 : 18.1 % 西安 : 2.6 % 西安 : 2.6 % 贵阳 : 2.6 % 贵阳 : 2.6 % 运城 : 5.8 % 运城 : 5.8 % 郑州 : 5.2 % 郑州 : 5.2 % 长沙 : 0.6 % 长沙 : 0.6 % 其他 其他 上海 临汾 保定 北京 十堰 南宁 密蘇里城 布雷登顿 常德 广州 张家口 成都 拉斯维加斯 昆明 晋城 武汉 济南 芒廷维尤 芝加哥 西宁 西安 贵阳 运城 郑州 长沙