Zheng Tingyin, Wu Xinghua, Su Ming, Yang Bo. EFFECT OF STEEL CONCEALED-BEAM ON STATIC PERFORMANCE OF NEW COMBINATORY CONCEALED-BEAM FLOOR[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(12): 51-56,73. doi: 10.13204/j.gyjz200912014
Citation:
Zheng Tingyin, Wu Xinghua, Su Ming, Yang Bo. EFFECT OF STEEL CONCEALED-BEAM ON STATIC PERFORMANCE OF NEW COMBINATORY CONCEALED-BEAM FLOOR[J]. INDUSTRIAL CONSTRUCTION , 2009, 39(12): 51-56,73. doi: 10.13204/j.gyjz200912014
Zheng Tingyin, Wu Xinghua, Su Ming, Yang Bo. EFFECT OF STEEL CONCEALED-BEAM ON STATIC PERFORMANCE OF NEW COMBINATORY CONCEALED-BEAM FLOOR[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(12): 51-56,73. doi: 10.13204/j.gyjz200912014
Citation:
Zheng Tingyin, Wu Xinghua, Su Ming, Yang Bo. EFFECT OF STEEL CONCEALED-BEAM ON STATIC PERFORMANCE OF NEW COMBINATORY CONCEALED-BEAM FLOOR[J]. INDUSTRIAL CONSTRUCTION , 2009, 39(12): 51-56,73. doi: 10.13204/j.gyjz200912014
EFFECT OF STEEL CONCEALED-BEAM ON STATIC PERFORMANCE OF NEW COMBINATORY CONCEALED-BEAM FLOOR
Received Date: 2009-02-16
Publish Date:
2009-12-20
Abstract
In new steel-concrete combinatory concealed-beam floor structure,the changes of the parameters of the steel concealed-beam are important factors,which impact the performance of the new combinatory concealed-beam floor structure.In order to investigate the effects on force bearing and deformation characteristics of the new combinatory structure,which caused by parameters such as the span,pitch,cross-section height and hole rate of web plate of steel concealed-beam.ANSYS is used to do the nonlinear analysis of the changes in the parameters.The result shows that the span of concealed-beam is significant to the bending stiffness and ultimate strength of the new combinatory concealed-beam floor;its influence is limited when the rate of opening in the web is within 26 percent.The pitch and cross-section height have less impact.The stress state of steel concealed-beam and concrete floor are changed with different span,pitch,cross-section height and hole rate of abdomen plate of steel concealed-beam.
References
[2] 郑廷银.高层钢结构设计[M].北京:机械工业出版社,2005:188-204.
Smith B S,Coull A.Tall Building Structures:Analysis and Design[M].NewYork:John WileySon Inc,1991:2-3.
[3] 阎兴华,郎义勇,周娟华,等.钢结构住宅楼盖系统的现状、发展及革新[J].北京建筑工程学院学报,2004(3):13-17.
[4] 王水平.预应力CS楼板的生产与应用[J].施工技术,2002(7):36-37.
[5] 龙成付,刘令芝.预应力混凝土叠合结构的工程实践[J].中外建筑,2004(2):177-179.
[6] 童根树,刘书江,李文斌.自承式钢模板系统性能试验和设计方法试验[J].建筑钢结构进展,2005(3):27-30.
[7] 杨波.钢-混凝土组合暗梁楼板性能研究[D].南京:南京工业大学,2007.
[8] 郑廷银,蔡万军,杨波.钢-混凝土新型组合暗梁楼盖的静力性能试验[J].南京工业大学学报,2008(1):11-15.
[9] 李黎明.ANSYS有限元分析实用教程[M].北京:清华大学出版社,2005:47-53.
[10] 江见鲸,陆新征,叶列平,等.混凝土结构有限元分析[M].北京:清华大学出版社,2005:72-75.
Relative Articles
[1] JIN Yunfei, LIU Yu, YE Fei, ZHANG Xiaoyong, JIN Tianwei. Research on Moment Redistribution of Prestressed Steel Reinforced Concrete Continuous Beams [J]. INDUSTRIAL CONSTRUCTION, 2024, 54(10): 77-83. doi: 10.3724/j.gyjzG21081606
[2] HOU Chongchi, WANG Kaixuan, ZHENG Wenzhong, LIU Yuchen, ZHANG Lijia, LI Hongbin. Seismic Performance and Cumulative Damage Analysis of Concrete Columns Confined by High-Strength Stirrups [J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 133-142. doi: 10.13204/j.gyjzG22111310
[3] LIANG Chaofeng, FU Yangyan, ZHAO Jiangxia, GAO Yueqing, WANG Chunhui. Damping Properties of Rubber Modified Recycled Aggregate Concrete Subjected to Different Damage Degrees [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 194-200,146. doi: 10.13204/j.gyjzG21111009
[4] ZHAO Xinli, HE Haoxiang, YAN Weiming, CHENG Shitao. SEISMIC VULNERABILITY ASSESSMENTS FOR OLD BUILDINGS BY DIFFERENT VERSIONS OF SEISMIC DESIGN CRITERIA AND DURABILITY [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 113-120,201. doi: 10.13204/j.gyjzG21020604
[5] YANG Zhao, YANG Quan, BAO Liang. EXPERIMENTAL STUDY ON SEISMIC DAMAGE OF INTERIOR JOINTS IN INTEGRALLY PREFABRICATED REINFORCED CONCRETE FRAMES [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(1): 54-60. doi: 10.13204/j.gyjzG20190926006
[6] HUANG Xin, LI Yi, ZHU Xudong, HU Xueying, LYU Yang. DAMAGE ANALYSIS OF HIGH-RISE BUILDING STRUCTURES WITH ASYMMETRIC VERTICAL SETBACKS UNDER RARE EARTHQUAKE ACTION [J]. INDUSTRIAL CONSTRUCTION, 2020, 50(6): 79-84. doi: 10.13204/j.gyjz202006013
[8] Li Hongxing, Gao Wei, Zhao Chunlian, Li Guoqiang, Dong Lühe, Sun Feifei. APPLICATION OF BUCKLING-RESTRAINED BRACES ( BRB) IN RC FRAME-BENT MAIN BUILDING STRUCTURE FOR LARGE THERMAL POWER PLANTS [J]. INDUSTRIAL CONSTRUCTION, 2014, 44(08): 98-102.
[9] Zhang Teng, Wu Xiaohan, He Jinsheng. ELASTO-PLASTIC TIME HISTORY ANALYSIS OF STRUCTURE AND CONSTRUCTION [J]. INDUSTRIAL CONSTRUCTION, 2014, 44(06): 90-94. doi: 10.13204/j.gyjz201406021
[10] Xiong Xueyu, Gao Feng, Xu Xiaoming. THEORETICAL RESEARCH ON DESIGN OF PSRC STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2012, 42(4): 113-117. doi: 10.13204/j.gyjz201204024
[11] Yang Junfen, Gu Qiang, Wan Hong, Peng Yiliang. DISCUSSION ON THE REMAINING BEARING CAPACITY OF COMPRESSIVE BRACES AFTER BUCKLING [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(4): 124-128. doi: 10.13204/j.gyjz201104026
[12] Xiong Xueyu, Huang Weiyi, Gao Feng. EXPERIMENTAL STUDY ON SHORT-TERM STIFFNESS OF PRESTRESSED STEEL REINFORCED CONCRETE BEAM [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(12): 30-33,11. doi: 10.13204/j.gyjz201112007
[13] Xiong Xueyu, Gao Feng, Li Yaming. EXPERIMENT AND CALCULATION OF NORMAL SECTION BENDING CAPACITY OF PRESTRESSED STEEL REINFORCED CONCRETE FRAME BEAMS [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(12): 24-29. doi: 10.13204/j.gyjz201112006
[14] Bai Xiaohong, Bai Guoliang. EXPERIMENTAL AND THEORETICAL STUDY ON THE DEFORMATION PROPERTY OF THE FRAME-BENT STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2010, 40(7): 31-35. doi: 10.13204/j.gyjz201007010
[15] Xin Li, Liang Xingwen. DIRECT DISPLACEMENT-BASED SEISMIC DESIGN METHOD OF HIGH-RISE BUILDINGS [J]. INDUSTRIAL CONSTRUCTION, 2008, 38(7): 6-10,53. doi: 10.13204/j.gyjz200807002
[16] Duan Hongxia, Li Zhengliang. RESEARCH ON DESIGN MEASURES FOR SEISMIC RESISTANCE OF RC MEGA-FRAME STRUCTURES [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(1): 22-26. doi: 10.13204/j.gyjz200601008
[17] Qin Cong-lv, Qian Lei, Gan Gang, Zhang Ai-hui. SEISMIC DESIGN OF AN APARTMENT BUILDING WITH BOTTOM WEAK STORY [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(10): 36-38. doi: 10.13204/j.gyjz200610011
[18] Fu Chuanguo, Lou Yu, Jiang Yongsheng. ANALYSIS AND DISCUSSION ON LAYOUT SCHEME OF PRESTRESSED BARS FOR TRANSFER STRUCTURE WITH LARGE-SPAN LAMINATED OPEN-WEB TRUSS [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(1): 72-75. doi: 10.13204/j.gyjz200401021
Cited by Periodical cited type(2) 1. 韩天成,梁书亭,朱筱俊,王文康,杨简. 大跨度预应力型钢混凝土楼盖竖向受力性能分析. 东南大学学报(自然科学版). 2023(02): 218-228 . 2. 张宇本,周明荣,罗志敏. 型钢-混凝土组合柱的抗震性能及其影响因素研究. 工程抗震与加固改造. 2023(05): 1-10 .
Other cited types(4)
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 0 2.5 5 7.5 10
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 5.5 % FULLTEXT : 5.5 % META : 88.5 % META : 88.5 % PDF : 6.1 % PDF : 6.1 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 15.2 % 其他 : 15.2 % China : 4.2 % China : 4.2 % [] : 0.6 % [] : 0.6 % 上海 : 7.3 % 上海 : 7.3 % 保定 : 0.6 % 保定 : 0.6 % 北京 : 12.7 % 北京 : 12.7 % 合肥 : 0.6 % 合肥 : 0.6 % 呼和浩特 : 0.6 % 呼和浩特 : 0.6 % 大连 : 1.2 % 大连 : 1.2 % 宿州 : 0.6 % 宿州 : 0.6 % 常德 : 1.2 % 常德 : 1.2 % 张家口 : 2.4 % 张家口 : 2.4 % 成都 : 1.2 % 成都 : 1.2 % 昆明 : 0.6 % 昆明 : 0.6 % 晋城 : 0.6 % 晋城 : 0.6 % 朝阳 : 0.6 % 朝阳 : 0.6 % 柳州 : 1.8 % 柳州 : 1.8 % 沈阳 : 1.8 % 沈阳 : 1.8 % 济宁 : 0.6 % 济宁 : 0.6 % 深圳 : 1.8 % 深圳 : 1.8 % 温州 : 0.6 % 温州 : 0.6 % 福州 : 0.6 % 福州 : 0.6 % 绍兴 : 0.6 % 绍兴 : 0.6 % 舟山 : 0.6 % 舟山 : 0.6 % 芒廷维尤 : 12.1 % 芒廷维尤 : 12.1 % 西宁 : 7.9 % 西宁 : 7.9 % 西安 : 3.6 % 西安 : 3.6 % 贵阳 : 0.6 % 贵阳 : 0.6 % 达州 : 2.4 % 达州 : 2.4 % 运城 : 9.7 % 运城 : 9.7 % 邯郸 : 0.6 % 邯郸 : 0.6 % 郑州 : 2.4 % 郑州 : 2.4 % 重庆 : 0.6 % 重庆 : 0.6 % 长沙 : 1.2 % 长沙 : 1.2 % 其他 China [] 上海 保定 北京 合肥 呼和浩特 大连 宿州 常德 张家口 成都 昆明 晋城 朝阳 柳州 沈阳 济宁 深圳 温州 福州 绍兴 舟山 芒廷维尤 西宁 西安 贵阳 达州 运城 邯郸 郑州 重庆 长沙