Liu Hao, Wang Ningcang, Lu Lu. ASEISMIC DESIGN OF BOTTOM FRAME-ASEISMIC WALL BUILDINGS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 58-60,53. doi: 10.13204/j.gyjz200904014
Citation:
Liu Hao, Wang Ningcang, Lu Lu. ASEISMIC DESIGN OF BOTTOM FRAME-ASEISMIC WALL BUILDINGS[J]. INDUSTRIAL CONSTRUCTION , 2009, 39(4): 58-60,53. doi: 10.13204/j.gyjz200904014
Liu Hao, Wang Ningcang, Lu Lu. ASEISMIC DESIGN OF BOTTOM FRAME-ASEISMIC WALL BUILDINGS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 58-60,53. doi: 10.13204/j.gyjz200904014
Citation:
Liu Hao, Wang Ningcang, Lu Lu. ASEISMIC DESIGN OF BOTTOM FRAME-ASEISMIC WALL BUILDINGS[J]. INDUSTRIAL CONSTRUCTION , 2009, 39(4): 58-60,53. doi: 10.13204/j.gyjz200904014
ASEISMIC DESIGN OF BOTTOM FRAME-ASEISMIC WALL BUILDINGS
1.
1. Eingineering Department of Xichang College,Xichang 615000,China;
2.
2. Xichang Building Prospecting and Design Institute Co.,Ltd,Xichang 615000,China;
3.
3. China Jingye Engineering Co.,Ltd.,Beijing 100088,China
Received Date: 2008-03-18
Publish Date:
2009-04-20
Abstract
A bottom frume-aseismic wall building has a poor aseismic behavior due to the greater difference in the characteristics of its upper and lower structures.However in view of the basic national conditions in China this sort of building with such structures will still exist for a considerable long time.The fortification target with three levels of aseismic behavior for this sort of building can be realized so long as aseismic codes are implemented strictly in the design of the building with rational structural layout and the effective aseismic measures being taken for its key positions.
References
[2] 吕西林.建筑结构[M].上海:同济大学出版社,2002;
刘大海.高层建筑抗震设计[M].北京:中国建筑工业出版社,1996;
[3] 王晓伟.砌体结构设计与施工[M].北京:中国建筑工业出版社,2004;
[4] 夏训清.简明抗震设计[M].北京:中国电力出版社,2005;
[5] GB500112001建筑抗震设计规范[S];
[6] GB500032001砌体结构设计规范[S];
[7] JGJ 32002高层建筑混凝土结构技术规程[S].
Relative Articles
[1] TANG Liansheng, WANG Yuxi, SUN Yinlei. Test Study on Effect of Free Iron Oxide in Granite Laterite on Cementation Characteristics of Laterite [J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 137-143. doi: 10.13204/j.gyjzG22032005
[2] CUI Honghuan, HU Shuqi, ZI Yadan. Influence of the Silt Content on Mechanical Properties of Unsaturated Soil Under High Suction [J]. INDUSTRIAL CONSTRUCTION, 2023, 53(12): 182-189,197. doi: 10.13204/j.gyjzG22080108
[3] LYU Yuangui, LIU Lizhi, CUI Qi, CAO Chen, YANG Yi. Research on the Influence of Shear Reinforcing Bars on the Seismic Performance of Prefabricated Joints [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(3): 105-111. doi: 10.13204/j.gyjzG21020311
[4] SHEN Haiying, WU Ruomin, WANG Haishan, TONG Jingzhong, TONG Genshu. Research on Effects of Corrugation Parameters on Shear Capacity of Corrugated Steel Plate Shear Walls [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 19-23,38. doi: 10.13204/j.gyjzG22052204
[13] Zhao Junhai Zhou Xiancheng Li Yan, . UNIFIED SOLUTION OF COULOMB’S PASSIVE EARTH PRESSURE FOR UNSATURATED SOILS BASED ON TWIN SHEAR UNIFIED STRENGTH THEORY [J]. INDUSTRIAL CONSTRUCTION, 2015, 45(10): 101-105. doi: 10.13204/j.gyjz201510019
[14] He Mingsheng, Wang Yong, Xia Duotian, Fu Xiaojian, Shi Leiwei. EXPERIMENTAL STUDY ON SHEARING STRENGTH OF THE NEW COMPOSITE BLOCK MASONRY [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(5): 94-98. doi: 10.13204/j.gyjz201305020
[15] Rao Weiguo, Ma Furong, Chen Rigao, Pang Yingbo, Zhang Zhihong, Xiao Zhaoran. EXPERIMENTAL RESEARCH ON THE EFFECT OF THE HEAVY METAL POLLUTANTS ON SOIL COMPACTNESS AND SHEAR STRENGTH [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 92-97. doi: 10.13204/j.gyjz201304019
[16] Hu Hua, Gu Hengxing, Yu Dengrong. EXPERIMENTS AND ANALYSIS OF INFLUENCE ON VIBRATORY LOAD TO SHEAR STRENGTH OF RED CLAY IN XIAMEN [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(9): 77-79,88. doi: 10.13204/j.gyjz200709017
[17] Huang Xin, Ning Jian-guo, Xu Sheng, Lan Ming-zhang. INFLUENCE OF Ca(OH)2 CONCENTRATION IN THE PORE SOLUTION ON STRENGTH INCREASING OF THE STABILIZED SOIL [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(7): 19-24. doi: 10.13204/j.gyjz200607004
Cited by Periodical cited type(5) 1. 胡世丽,蒋冰. 级配和含水量对赣南红土抗剪强度特性影响的试验研究. 江西理工大学学报. 2021(01): 1-6 . 2. 汤有志,吴瑞潜,杨光. 浙东大运河非饱和粉质黏土抗剪强度特性的试验研究. 力学季刊. 2021(02): 360-369 . 3. 王轩,李珍玉,肖宏彬,刘思思,刘俊. 基于土-水特征曲线的植物边坡抗剪强度研究. 水土保持学报. 2021(05): 57-62+71 . 4. 王永璐,刘顺青,姜朋明. 含水率及吸力对非饱和下蜀土强度特性影响试验研究. 三峡大学学报(自然科学版). 2020(04): 48-52 . 5. 张唐瑜,马丽娜,张戎令,王起才,王斌文,姚裕春. 非饱和泥岩土水特征曲线试验及数学模型研究. 水资源与水工程学报. 2019(06): 225-229 .
Other cited types(12)
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-02 2024-03 2024-04 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 0 1 2 3 4 5 6
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 14.1 % FULLTEXT : 14.1 % META : 85.9 % META : 85.9 % FULLTEXT META
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 4.7 % 其他 : 4.7 % 丽水 : 1.6 % 丽水 : 1.6 % 北京 : 7.8 % 北京 : 7.8 % 台州 : 9.4 % 台州 : 9.4 % 张家口 : 1.6 % 张家口 : 1.6 % 扬州 : 1.6 % 扬州 : 1.6 % 杭州 : 1.6 % 杭州 : 1.6 % 武汉 : 1.6 % 武汉 : 1.6 % 湖州 : 7.8 % 湖州 : 7.8 % 漯河 : 1.6 % 漯河 : 1.6 % 芒廷维尤 : 14.1 % 芒廷维尤 : 14.1 % 衢州 : 1.6 % 衢州 : 1.6 % 西宁 : 39.1 % 西宁 : 39.1 % 运城 : 1.6 % 运城 : 1.6 % 郑州 : 1.6 % 郑州 : 1.6 % 重庆 : 1.6 % 重庆 : 1.6 % 长沙 : 1.6 % 长沙 : 1.6 % 其他 丽水 北京 台州 张家口 扬州 杭州 武汉 湖州 漯河 芒廷维尤 衢州 西宁 运城 郑州 重庆 长沙