Zhang Changrui, Tian Yong, Hu Yingjie, Ren Yajing. TRANSFORMATION DESIGN OF TIANJIN MEIYA AUTOMOBILE PLANT[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(11): 178-181. doi: 10.13204/j.gyjz2001411035
Citation:
Jiao Junting, Diao Bo, Ye Yinghua. RESEARCH ON THE ULTIMATE AXIAL COMPRESSION RATIO OF REINFORCED CONCRETE L-SHAPED COLUMNS BY SECTION GAUSS NUMERICAL INTEGRATION[J]. INDUSTRIAL CONSTRUCTION , 2007, 37(7): 36-38. doi: 10.13204/j.gyjz200707012
Zhang Changrui, Tian Yong, Hu Yingjie, Ren Yajing. TRANSFORMATION DESIGN OF TIANJIN MEIYA AUTOMOBILE PLANT[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(11): 178-181. doi: 10.13204/j.gyjz2001411035
Citation:
Jiao Junting, Diao Bo, Ye Yinghua. RESEARCH ON THE ULTIMATE AXIAL COMPRESSION RATIO OF REINFORCED CONCRETE L-SHAPED COLUMNS BY SECTION GAUSS NUMERICAL INTEGRATION[J]. INDUSTRIAL CONSTRUCTION , 2007, 37(7): 36-38. doi: 10.13204/j.gyjz200707012
RESEARCH ON THE ULTIMATE AXIAL COMPRESSION RATIO OF REINFORCED CONCRETE L-SHAPED COLUMNS BY SECTION GAUSS NUMERICAL INTEGRATION
Received Date: 2005-12-25
Publish Date:
2007-07-20
Abstract
Based on plane assumption and large and small eccentric compression limitation,the ultimate axial compression ratio of reinforced concrete L-shaped columns is computed when the ratio of length to thickness of section is less than 2.5,by the section Gauss numerical integration method.The following main conclusions can be drawn: the ultimate axial compression ratio of L-shaped columns is affected by different loading angles.The ultimate axial compression ratio reduces with the increasing of the ratio of length to thickness of sections.The ultimate axial compression ratio at the worst loading angle should be satisfied,and the ratio of length to thickness of sections should not be too large in practice design.
References
[2] 王丹,黄承运,刘明.L、T形柱轴压比限值研究.工程力学,2003,20(3):134-141
黄承逵,王丹,崔博.钢筋混凝土异形柱轴压比限值研究.大连理工大学学报,2002(3):213-217
[3] 焦俊婷,叶英华,刁波.钢筋混凝土偏压构件截面非线性分析高斯积分.北京航空航天大学学报,2003,29(4):370-373
[4] Jiao Junting,Ye Yinghua,Diao Bo.Bearing Capacity Analysis of Reinforced Concrete L-Shape Cross-Section Under Biaxial Eccentric Compression.Progress in Natural Science,2003,13(6):429-433
[5] GB 50010-2002 混凝土结构设计规范
[6] DB 29-16-98 大开间住宅钢筋混凝土异形柱框轻结构技术规程
Relative Articles
[1] LI Xiang, GUO Yilu, ZHANG Zili, MENG Xinmiao, JI Xiaodong. Investigation of Factors Influencing the Compressive Strength of Magnesium Phosphate Cement Mortars [J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 185-190. doi: 10.3724/j.gyjzG24012606
[2] LI Chunhua, HE Sheng, XIONG Anping. Eigenvalue Imperfection Modal Method for Controlling Vertical Geometric Imperfections [J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 175-179. doi: 10.13204/j.gyjzG21083004
[3] LI Jianfei. SENSITIVITY ANALYSIS OF FACTORS EFFECTING 3D STABILITY OF SLOPES REINFORCED WITH ANTI-SLIDE PILES [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 156-164. doi: 10.13204/j.gyjzG19083102
[5] Lu Xinying, Li Yang, Li Yuanjin. STUDY OF GALVANIC CORROSION SENSITIVITY BETWEEN ANY COUPLE OF STUD,WELDMENT,OR BEAM [J]. INDUSTRIAL CONSTRUCTION, 2015, 45(8): 125-128. doi: 10.13204/j.gyjz201508023
[6] Sun Min, Tong Liping, Zhang Yuguo. SENSITIVITY RESEARCH OF DAMPING ENERGY DISSIPATION FOR SLIDING BASE-ISOLATED STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2015, 45(5): 55-60. doi: 10.13204/j.gyjz201505013
[8] Zhu Fengbin, Miao Linchang, Gu Huanda, Lin Shuixian. SENSITIVITY ANALYSIS OF DESIGN PARAMETERS OF COMPOSITE SOIL NAILED WALL WITH BORED PILES IN DEEP EXCAVATION [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 77-83. doi: 10.13204/j.gyjz201311018
[9] Weng Guangyuan, Wang Sheliang. VERTICAL SEISMIC RESPONSE ANALYSIS OF LONG-SPAN SPHERICAL SHELL STRUCTURE SUBJECT TO INCONSISTENT EXCITATION [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(8): 91-95. doi: 10.13204/j.gyjz201108022
[10] Xin Li, Wang Min, Zeng Fansheng, Liang Xingwen. MODAL PUSHOVER ANALYSIS IMPROVED BY CAPACITY-SPECTRUM THEORY [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(1): 51-56. doi: 10.13204/j.gyjz201101014
[11] Zhou Hongbo, Cai Laibing, Gao Wenjie. RISK IDENTIFICATION AND SENSITIVITY ANALYSIS OF LEAKAGE OF SLURRY WALL FOR DEEP EXCAVATIONS [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 84-87. doi: 10.13204/j.gyjz200904019
[12] Zhang Jizhou, Miao Linchang, Wang Huajing. ANALYSIS OF PARAMETERS SENSITIVITY OF DUNCAN-CHANG MODEL AND STUDY ON THE CONTROLLING DEFORMATION [J]. INDUSTRIAL CONSTRUCTION, 2008, 38(3): 75-79. doi: 10.13204/j.gyjz200803021
[13] Zhang Tao, Qin Weizu. RESTRAINT DEGREE AND EVALUATION OF CRACKING SENSITIVITY IN EARLY CONCRETE [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(3): 47-50. doi: 10.13204/j.gyjz200603013
[14] Zhang Tao, Qin Weizu. CREEP OF CONCRETE AT EARLY AGE AND ITS EFFECT ON CRACKING SENSITIVITY [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(8): 89-92,105. doi: 10.13204/j.gyjz200508022
[15] Zhao Xianzhong, Jiang Xiaoying, Zhao Zhaoyi. GLOBAL STABILITY ANALYSIS ON SINGLE-LAYER RETICULATED CYLINDRICAL SHELLS OF CHENGDU AIRPORT TERMINALS [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(7): 61-63. doi: 10.13204/j.gyjz200407017
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 0 2 4 6 8
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 17.6 % FULLTEXT : 17.6 % META : 82.4 % META : 82.4 % FULLTEXT META
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 13.2 % 其他 : 13.2 % 上海 : 1.5 % 上海 : 1.5 % 北京 : 11.8 % 北京 : 11.8 % 台州 : 1.5 % 台州 : 1.5 % 张家口 : 10.3 % 张家口 : 10.3 % 格兰特县 : 1.5 % 格兰特县 : 1.5 % 湘潭 : 1.5 % 湘潭 : 1.5 % 芒廷维尤 : 26.5 % 芒廷维尤 : 26.5 % 芝加哥 : 1.5 % 芝加哥 : 1.5 % 西宁 : 29.4 % 西宁 : 29.4 % 重庆 : 1.5 % 重庆 : 1.5 % 其他 上海 北京 台州 张家口 格兰特县 湘潭 芒廷维尤 芝加哥 西宁 重庆