Yang Yong, Zhuang Yun, Guo Zixiong, Nie Jianguo. COMPARISONS ANALYSIS OF MAJOR DESIGN SPECIFICATIONS ON CALCULATING LOAD-BEARING CAPACITY OF STEEL REINFORCED CONCRETE (SRC) COLUMN[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 82-87. doi: 10.13204/j.gyjz200705021
Citation:
Yang Yong, Zhuang Yun, Guo Zixiong, Nie Jianguo. COMPARISONS ANALYSIS OF MAJOR DESIGN SPECIFICATIONS ON CALCULATING LOAD-BEARING CAPACITY OF STEEL REINFORCED CONCRETE (SRC) COLUMN[J]. INDUSTRIAL CONSTRUCTION , 2007, 37(5): 82-87. doi: 10.13204/j.gyjz200705021
Yang Yong, Zhuang Yun, Guo Zixiong, Nie Jianguo. COMPARISONS ANALYSIS OF MAJOR DESIGN SPECIFICATIONS ON CALCULATING LOAD-BEARING CAPACITY OF STEEL REINFORCED CONCRETE (SRC) COLUMN[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 82-87. doi: 10.13204/j.gyjz200705021
Citation:
Yang Yong, Zhuang Yun, Guo Zixiong, Nie Jianguo. COMPARISONS ANALYSIS OF MAJOR DESIGN SPECIFICATIONS ON CALCULATING LOAD-BEARING CAPACITY OF STEEL REINFORCED CONCRETE (SRC) COLUMN[J]. INDUSTRIAL CONSTRUCTION , 2007, 37(5): 82-87. doi: 10.13204/j.gyjz200705021
COMPARISONS ANALYSIS OF MAJOR DESIGN SPECIFICATIONS ON CALCULATING LOAD-BEARING CAPACITY OF STEEL REINFORCED CONCRETE (SRC) COLUMN
1.
1 College of Civil Engineering,Huaqiao University Quanzhou 362021;
2.
2 Postdoctoral Station of Civil Engineering,Tsinghua University Beijing 100084
Received Date: 2006-12-20
Publish Date:
2007-05-20
Abstract
The calculation methods to calculate load-bearing capacity of steel reinforced concrete(SRC) column are mostly based on calculation of the bearing capacity of reinforced concrete column,the allowable stress law of steel column and the superposed method.Four typical calculation methods respectively based on the above patterns provided by ACI-318-02 specification,AISC-LRFD design code,and the Specification for SRC structure(YB 9082-97) of China are introduced.According to a calculation example of load-bearing capacity of SRC eccentrically compressed,calculation method and steps of the four routine calculations pattern are presented.Load-bearing capacities of a series of SRC columns specimens tested before in references are also calculated using the method of the above specifications and codes,and comparison analysis between calculated results and test results are also conducted.It is denoted that among the four typical methods,the AISC-LRFD calculation method provides very conservative calculation results,calculation methods of the ACI specification and YB 9082-97 specification provides results close to the test results.
References
Buildings Code Requirements for Structural Concrete (ACI 318-02).Detroit (MI):American Concrete Institute (ACI),2002
[2] AISC.Load and Resistance Factor Design Specification for Structural Steelbuildings.Chicago:American Institute of Steel Construction (AISC),1993
[3] 日本建築学会.鉄骨鉄筋コンクリ一ト計算規準.同解説,2001
[4] YB 9082-97 钢骨混凝土结构设计规程
[5] El-Tawil S,Sanz-Picon C F,Deierlein G G.Evaluation of ACI 318 and AISC (LRFD) Strength Provisions for Composite Beam-Columns.Journal of Constructional Steel Research,1995,34:23-103
[6] El-Tawil S,Deierlein G G.Strength and Ductility of Concrete Encased Composite Columns.Journal of Structural Engineering,ASCE,1999,125 (9):1 009-1 019
[7] Weng C C,Yen S I.Comparisons of Concrete-Encased Composite Column Strength Provisions of ACI Code and AISC Specification.Engineering Structures,2002,24:59-72
[8] Viest I M,Colaco J P,Furlong R W,et al.Composite Construction Design for Buildings.New York:McGraw-Hill,1997
[9] Ricles J M,Paboojian S D.Seismic Performance of Steel-Encased Composite Columns.Journal of Structural Engineering,ASCE,1994,120 (8):94-2474
[10] Mirza S A,Lacroix E A.Comparative Strength Analyses of Concrete-Encased Steel Composite Columns.Journal of Structural Engineering,ASCE,2004,130 (12):53-1 941
Relative Articles
[1] ZHONG Zhiwu. Mechanical Properties of Fly Ash Concrete After Creep and Being Subjected to Different Stresses [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 152-157,132. doi: 10.13204/j.gyjzG21112105
[2] Li Xiaofen Liu Lixin Zhang Huipeng, . EXPERIMENTAL STUDY OF FATIGUE BEHAVIOR OF THE PRESTRESSED CONCRETE BEAMS WITH PRETENSIONED BENT-UP TENDONS [J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 95-101. doi: 10.13204/j.gyjz201507020
[3] Zhang Peng, Zhong Qingyu, Deng Yu, Liu Wenbing, Mou Xiaohui. EXPERIMENTAL AND THEORETICAL RESEARCH ON CRACKS OF CFRP-PCPS COMPOSITE REINFORCED CONCRETE CONTINUOUS BEAMS [J]. INDUSTRIAL CONSTRUCTION, 2015, 45(6): 7-11. doi: 10.13204/j.gyjz201506002
[4] Wang Xiang, Zhang Feilin, Xiao Nan. LESSONS OF REMOVING FORMWORK AHEAD OF TIME UNDER THE CONSTRUCTION OF POST-CAST STRIP IN RC STRUCTURES [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(2): 159-163. doi: 10.13204/j.gyjz201302032
[5] Hu Jinxu, Zhu Xiangjun. ANALYSIS AND CFRP TREATMENT OF THERMAL CRACKS OF THE OVERGROUND REINFORCED CONCRETE POND [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(8): 130-133. doi: 10.13204/j.gyjz201108031
[6] Zhang Xinbin, Simon Chen, Cheng Daye, Zhang Zhong. CRACK CONTROL OF MASS CONCRETE [J]. INDUSTRIAL CONSTRUCTION, 2010, 40(1): 1-4. doi: 10.13204/j.gyjz201001001
[7] Ni Guowei, Jiang Dengling, Chen Juannong, Qi Jiarui. BENDING TEST AND CRACK CALCULATION OF BI-STEEL CONCRETE BEAM [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(6): 59-64. doi: 10.13204/j.gyjz200906015
[8] Wu Jing, Meng Shaoping, Wang Cui. INTERNAL FORCE REDISTRIBUTION AND CRACK CONTROL OF PRESTRESSED CONCRETE FLAT-FLOORS [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(12): 14-17. doi: 10.13204/j.gyjz200912004
[9] Zhou Tong, Wu Xiaogui, Qiu Xihong. CONTROL AND MONITORING OF TEMPERATURE CRACKS OF BASEMENT WALL FOR SHANGHAI SCIENCE MUSEUM [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(9): 81-84. doi: 10.13204/j.gyjz200909017
[10] Zhou Wei, Zheng Wenzhong. EVALUATION AND RETROFIT OF CONSTRUCTION CRACK ON PRESTRESSED CONCRETE FRAME BEAMS FOR A LIBRARY [J]. INDUSTRIAL CONSTRUCTION, 2008, 38(9): 112-115. doi: 10.13204/j.gyjz200809031
[11] Liu Wei, Dong Bixin, Li Weiwen, Xing Feng. THE STUDY ON THERMAL STRESS AND TEMPERATURE CRACK OF UNDERGROUND MASS CONCRETE [J]. INDUSTRIAL CONSTRUCTION, 2008, 38(7): 79-81,130. doi: 10.13204/j.gyjz200807019
[12] Li Chengzhong, Ji Weibing, Wu Jing. ACTUALIZATION AND VERIFICATION OF NO-JOINT DEISNG OF AN OVER-LONG TALL BUILDING [J]. INDUSTRIAL CONSTRUCTION, 2008, 38(8): 109-113. doi: 10.13204/j.gyjz200808029
[13] Chen Junyi, Zou Daoqin, Gan Gang. ANALYSIS ON TEMPERATURE STRESS OF SUPER-LONG FRAME STRUCTURE WITH BEAM TEMPERATURE LAG TAKEN INTO ACCOUNT [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(7): 39-43. doi: 10.13204/j.gyjz200707013
[14] Wang Chun-wu. DISCUSSION ON DESIGN PROBLEMS OF OVER-LONG CONCRETE STRUCTURES [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(11): 53-56. doi: 10.13204/j.gyjz200711014
[15] Wu Jing, Wu Jun-yan, Meng Shao-ping. RESEARCH ON INDIRECT STRESS AND CRACK CONTROL OF CONCRETE STRUCTURES [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(5): 13-15,98. doi: 10.13204/j.gyjz200605004
[16] Meng Shao-ping, Han Chong-qing, Wu Jing. RESEARCH ON BASIC PROBLEMS AND ENGINEERING PRACTICES ABOUT DESIGN OF CONCRETE STRUCTURES WITH LARGE LONGITUDINAL LENGTH [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(5): 1-4,8. doi: 10.13204/j.gyjz200605001
[17] Zhang Yu-ming, Wu Jing, Meng Shao-ping. STUDY ON CONTROL OF CRACK IN PRESTRESSED CONCRETE STRUCTURES WITH LARGE LONGITUDINAL LENGTH [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(5): 8-12. doi: 10.13204/j.gyjz200605003
[18] Zhang Yong-sheng, Li Yan-ying, Meng Shao-ping. RESEARCH ON TEMPERATURE AND SHRINKAGE CRACK OF SUPER-LONG FRAME BEAM-SLAB STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(6): 50-53,76. doi: 10.13204/j.gyjz200606016
[19] Li Fumin, Meng Shaoping. CALCULATING OF TEMPERATURE AND SHRINKAGE REINFORCEMENTS OF OVERLONG REINFORCED CONCRETE BEAM-SLAB STRUCTURES [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(7): 34-38. doi: 10.13204/j.gyjz200507011
[20] Song Wei, Yuan Yong. PRACTICAL ANALYSIS OF FLEXURAL STIFFNESS OF PRESTRESS CONCRETE MEMBERS [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(11): 30-33. doi: 10.13204/j.gyjz200411009
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 0 1 2 3 4 5
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 26.2 % FULLTEXT : 26.2 % META : 73.8 % META : 73.8 % FULLTEXT META
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 11.5 % 其他 : 11.5 % 其他 : 0.8 % 其他 : 0.8 % China : 1.0 % China : 1.0 % 上海 : 1.0 % 上海 : 1.0 % 东莞 : 4.3 % 东莞 : 4.3 % 乌鲁木齐 : 0.3 % 乌鲁木齐 : 0.3 % 保定 : 0.3 % 保定 : 0.3 % 信阳 : 0.8 % 信阳 : 0.8 % 六盘水 : 0.3 % 六盘水 : 0.3 % 兰州 : 0.8 % 兰州 : 0.8 % 北京 : 3.6 % 北京 : 3.6 % 南京 : 1.3 % 南京 : 1.3 % 南宁 : 1.5 % 南宁 : 1.5 % 南昌 : 0.3 % 南昌 : 0.3 % 南阳 : 0.5 % 南阳 : 0.5 % 合肥 : 1.0 % 合肥 : 1.0 % 吉林 : 0.3 % 吉林 : 0.3 % 嘉兴 : 0.3 % 嘉兴 : 0.3 % 天津 : 1.3 % 天津 : 1.3 % 太原 : 0.5 % 太原 : 0.5 % 宁波 : 0.3 % 宁波 : 0.3 % 常州 : 1.0 % 常州 : 1.0 % 常德 : 0.3 % 常德 : 0.3 % 平顶山 : 0.3 % 平顶山 : 0.3 % 广州 : 1.0 % 广州 : 1.0 % 张家口 : 1.3 % 张家口 : 1.3 % 德阳 : 0.5 % 德阳 : 0.5 % 扬州 : 0.8 % 扬州 : 0.8 % 新乡 : 1.5 % 新乡 : 1.5 % 无锡 : 0.3 % 无锡 : 0.3 % 昆明 : 3.1 % 昆明 : 3.1 % 晋中 : 1.5 % 晋中 : 1.5 % 晋城 : 0.3 % 晋城 : 0.3 % 朝阳 : 1.0 % 朝阳 : 1.0 % 杭州 : 1.5 % 杭州 : 1.5 % 柳州 : 0.3 % 柳州 : 0.3 % 格兰特县 : 0.5 % 格兰特县 : 0.5 % 武汉 : 0.3 % 武汉 : 0.3 % 洛阳 : 0.5 % 洛阳 : 0.5 % 济南 : 1.8 % 济南 : 1.8 % 深圳 : 0.5 % 深圳 : 0.5 % 湘潭 : 0.3 % 湘潭 : 0.3 % 漯河 : 0.5 % 漯河 : 0.5 % 石家庄 : 0.5 % 石家庄 : 0.5 % 福州 : 0.8 % 福州 : 0.8 % 绍兴 : 0.5 % 绍兴 : 0.5 % 芒廷维尤 : 3.3 % 芒廷维尤 : 3.3 % 芝加哥 : 3.6 % 芝加哥 : 3.6 % 苏州 : 0.8 % 苏州 : 0.8 % 西宁 : 24.5 % 西宁 : 24.5 % 西安 : 0.8 % 西安 : 0.8 % 贵阳 : 0.8 % 贵阳 : 0.8 % 运城 : 2.8 % 运城 : 2.8 % 连云港 : 0.3 % 连云港 : 0.3 % 邯郸 : 0.3 % 邯郸 : 0.3 % 邵阳 : 0.3 % 邵阳 : 0.3 % 郑州 : 5.4 % 郑州 : 5.4 % 重庆 : 0.5 % 重庆 : 0.5 % 铁岭 : 0.3 % 铁岭 : 0.3 % 锦州 : 0.8 % 锦州 : 0.8 % 镇江 : 0.8 % 镇江 : 0.8 % 长春 : 0.5 % 长春 : 0.5 % 长沙 : 0.3 % 长沙 : 0.3 % 长治 : 0.3 % 长治 : 0.3 % 阜新 : 0.3 % 阜新 : 0.3 % 阳泉 : 0.3 % 阳泉 : 0.3 % 青岛 : 0.8 % 青岛 : 0.8 % 黄石 : 0.5 % 黄石 : 0.5 % 其他 其他 China 上海 东莞 乌鲁木齐 保定 信阳 六盘水 兰州 北京 南京 南宁 南昌 南阳 合肥 吉林 嘉兴 天津 太原 宁波 常州 常德 平顶山 广州 张家口 德阳 扬州 新乡 无锡 昆明 晋中 晋城 朝阳 杭州 柳州 格兰特县 武汉 洛阳 济南 深圳 湘潭 漯河 石家庄 福州 绍兴 芒廷维尤 芝加哥 苏州 西宁 西安 贵阳 运城 连云港 邯郸 邵阳 郑州 重庆 铁岭 锦州 镇江 长春 长沙 长治 阜新 阳泉 青岛 黄石