Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 35 Issue 5
Dec.  2014
Turn off MathJax
Article Contents
Shi Zhixiao, Li Xin, Zhou Jing. RECENT STUDY OF THE APPLICATION OF THE JOINT TIME-FREQUENCY ANALYSIS METHODS IN CIVIL ENGINEERING[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(5): 75-80,109. doi: 10.13204/j.gyjz200505020
Citation: Shi Zhixiao, Li Xin, Zhou Jing. RECENT STUDY OF THE APPLICATION OF THE JOINT TIME-FREQUENCY ANALYSIS METHODS IN CIVIL ENGINEERING[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(5): 75-80,109. doi: 10.13204/j.gyjz200505020

RECENT STUDY OF THE APPLICATION OF THE JOINT TIME-FREQUENCY ANALYSIS METHODS IN CIVIL ENGINEERING

doi: 10.13204/j.gyjz200505020
  • Received Date: 2004-10-25
  • Publish Date: 2005-05-20
  • The methods of joint time frequency analysis have been widely applied in civil engineering due to its ability to provide local time frequency characteristics of signal and the ability to analyze nonstationary signal. Linear transform, bi linear transform and Hilbert Huang transform have been applied in the simulation of artificial seismic wave, dynamic analysis and estimation of the reliability of structures, parameters identification and damage detection in civil engineering. The existing problems are presented and the further research direction is discussed based on the summation of the application of the methods in civil engineering.
  • loading
  • Shie Qian, Dapang Chen. Joint Time-Frequency Analysis. IEEE Signal Processing Magazine, 1999,16(2) :53 ~ 67;
    [2] Leon Cohen. Time-Frequency Distributions- a Review. Proceedings of the IEEE, 1989, 77(7): 941 ~ 981;
    [3] Norden E. Huang Z S, Steven R, Long, et al. The Empirical mode Decomposition and the Hilbert Spectrum for Nonlinear and NonStationary Time Series Analysis. Proc. R. Soc. A, 1998,454: 903 ~ 995;
    [4] Junjie Wang, Liehu Fan, Shie Qian, Jing Zhou. Simulations of NonStationary Frequency Content and Its Importance to Seismic Assessment of Structures. Earthquake Engineering and Structural Dynamics, 2002,31:993 ~ 1 005;
    [5] Conte J P, Peng B F. Fully Nonstationary Analytical Earthquake Ground-Motion Model. Journal of Engineering Mechanics, 1997, 123(1): 15~24;
    [6] 曹晖,赖明,白绍良.基于小波变换的地震地面运动仿真研究.土木工程学报,2002,35(4):40~46;
    [7] Sushovan Mukherjee,Gupta Vinay K. Wavelet-Based Characterization of Design Ground Motions. Earthquake Engineering and Structural Dynamics, 2002, 31:1 173~1 190;
    [8] Biswajit Basu, Gupta Vinay K. Seismic Response of SDOF System by Wavelet Modeling of Nonstationary Processes. Journal of Engineering Mechanics, 1998,124(10): 1 142 ~ 1 150;
    [9] Biswajit Basu. Gupta Vinay K. Stochastic Seismic Response of SingleDegree-of-Freedom Systems through Wavelets. Engineering Structures,2000, 22:1 714 ~ 1 722;
    [10] Jun Lyama, Hitoshi Kuwamura. Application of Wavelets to Analysis and Simulation of Earthquake Motions. Earthquake Engineering and Structural Dynamics, 1999,28:255 ~ 272;
    [11] Biswajit Basu, Gupta Vinay K. Non-Stationary Seismic Response of MDOF Systems by Wavelet Transform. Earthquake Engineering and Structural Dynamics, 1997, 26:1 243 ~ 1 258;
    [12] Biswajit Basu, Gupta Vinay K. Wavelet-Based Analysis of NonStationary Response of a Slipping Foundation. Journal of Sound and Vibration, 1999, 222(4) :547 ~ 563;
    [13] Biswajit Basu, Gupta Vinay K. Wavelet-Based Non-Stationary Response Analysis of Friction Based-Isolated Structure. Earthquake Engineering and Structural Dynamics, 2000,29:1 659 ~ 1 676;
    [14] 曹晖,赖明,白绍良.基于小波分析的结构动力可靠度估计.世界地震工程,2000,16(4):70~77;
    [15] 樊剑,唐家祥.基于离散小波变换的多自由度结构非平稳随机响应计算.振动工程学报,2001,14(4):438~441;
    [16] 樊剑,唐家祥.基于离散小波变换的滑移隔振结构非平稳随机响应计算.工程力学,2002,19(2):73~77;
    [17] 段雪平,朱宏平.地震作用下结构动力响应的小波分析.华中理工大学学报,2000,28(11):75~78;
    [18] 肖梅岭,叶燎原.连续小波变换用于结构地震反应分析.世界地震工程,2001,17(4):79~83;
    [19] 周太全,李光霞,贾军波.基础隔震结构在地震作用下动力响应小波分析.工业建筑,2003,33(6):21~23;
    [20] 应益荣,梁家荣.单质点弹性体系的小波变换.西北建筑工程学院学报,1999(1):75~80;
    [21] Zhang Ray Ruichong, Shuo Ma, Erdal Safak, Stephen Hartzell. HilbertHuang Transform Analysis of Dynamic and Earthquake Motion Recordings.Journal of Engineering Mechanics, 2003, 129(8) :861 ~ 875;
    [22] Tso-Chien Pan, Chin Long Lee. Application of Wavelet Theory to Identify Yielding in Seismic Response of Bi-Linear Structures.Earthquake Engineering and Structural Dynamic, 2002, 31:379 ~ 398;
    [23] Staszewski W J. Identification of Damping in Mod Systems Using TimeScale Decomposition. Journal of Sound and Vibration, 1997, 203(2):283 ~ 305;
    [24] Lamarque C H, Pernot S, Cuer A. Damping Identification in MultiDegree-of Freedom Systems via a Wavelet-Logarithmic Decrement-Part1: Theory. Journal of Sound and Vibration. 2000, 235:361 ~ 374;
    [25] Slavic J, Simonovski I, Boltezar M. Damjping Identification Using a Continuous Wavelet Transform: Application to Real Data. Journal of Sound and Vibration, 2003, 262:291 ~ 307;
    [26] Kijeswski T, Kareem A. Wavelet Transform for System Identification in Civil Engineering Computer Aided Civil and Infrastructure Engineering.2003, 18:339 ~ 355;
    [27] Zhang Z Y, Hua H X, Xu X Z, Huang Z. Modal Parameter Identification through Gabor Expansion of Reponse Signals. Journal of Sound and Vibration, 2003, 266(5) :943 ~ 955;
    [28] oseph Lardies, Stephane Gouttbroze. Identification of Modal Parameters Using the Wavelet Transform. International Journal of Mechanical Sciences, 2002, 44: 2 263 ~ 2 283;
    [29] 于开平,邹经湘.模态参数识别的小波变换方法.宇航学报,1999,20(4):72~76;
    [30] Bonato P, Ceravolo R, Stefano A De. Time-Frequency and Ambiguity Function Approaches in Structural Identification. Journal of Engineering Mechanics, 1997, 123:1 260 ~ 1 267;
    [31] Bonato P, Ceravolo R, Stefano A De. The Use of Wind Excitation in Structural Identification. Journal of Wind Engineering and Industrial Aerodynamics, 1998,74 - 76:709 ~ 718;
    [32] Bonato P, Ceravolo R, Stefano A De, Molonari F. Use of Cross-TimeFrequency Estimators for Structural Identification in Non-Stationary Conditions and under Unknown Excitation. Journal of Sound and Vibration, 2000,237(5):775 ~ 791;
    [33] Yang Jann N, Ying Lei, Shuwen Pan, Norden Huang. System Identification of Linear Structures Based on Hilbert-Huang Spectral Analysis. Part 1:Normal Modes. Earthquake Engineering and Structure Dynamics, 2003, 32:1 443 ~ 1 467;
    [34] Yang Jann N, Ying Lei, Shuwen Pan, Norden Huang. System Identification of Linear Structures Based on Hilbert-Huang Spectral Analysis. Part 2: Complex Modes. Earthquake Engineering and Structure Dynamics, 2003,32:1 533 ~ 1 554;
    [35] 续秀忠,李忠付,等.非平稳环境激励下线性结构在线模态参数辨识.上海交通大学学报,2003,37(1):118~121;
    [36] 韩海明,沈涛虹,宋汉文.工况模态分析的EMD方法.振动与冲击,2002,21(4):69~71;
    [37] 陈隽,徐幼麟.HHT方法在结构模态参数识别中的应用.振动工程学报,2003,16(3):383~388;
    [38] Michanel Feldman. Non-Linear System Vibration Analysis Using Hilbert Transform-I. Free Vibration Analysis Method FREEVIB'. Mechanical Systems and Signal Processing 1994, 8(2) :119 ~ 127;
    [39] LiLi Wang, Jinghui Zhang, Chao Wang, Shiyue Hu. Time-Frequency Analysis of Nonlinear System: the Skeleton Linear Model and the Skeleton Curves. Journal of Sound and Acoustics, 2003, 125:170 ~ 177;
    [40] LiLi Wang, Jinghui Zhang, Chao Wang, Shiyue Hu. Identification of Nonlinear Systems through Time-Frequency Filtering Technique. Journal of Sound and Acoustics. 2003, 125:199 ~ 204;
    [41] 续秀忠,张志谊,华宏星.应用时频分析方法辨识时变系统的模态参数.振动工程学报,2003,16(6):358~362;
    [42] Yoshihiro Kitada, Identification of Nonlinear Structural Dynamic Systems Using Wavelets. Journal of Engineering Mechanics, 1998, 124(10) :1059~1066;
    [43] Ghanem R, Romeo F. A Wavelet-Based Approach for the Identification of Linear Time-Varying Dynamical Systems. Journal of Sound and Vibration, 2000, 234(4) :555 ~ 576;
    [44] Ghanem R, Romeo F. A Wavelet-Based Approach for Model and Parameter Identification of Non-Linear Systems. International Journal of Non-Linear Mechanics, 2001,36: 835 ~ 859;
    [45] Staszewski W J. Identification of Non-Linear Systems Using Multi-Scale Rides and Skeletons of the Wavelet Transform. Journal of Sound and Vibration, 1998,214(4) :639 ~ 658;
    [46] Haase M, Widjajakusuma J. Damage Identification Based on Ridges and Maxima Lines of the Wavelet Transform. International Journal of Engineering Science. 2003, 41:1 423 ~ 1 443;
    [47] 高宝成,时良平,等基于小波分析的简支梁裂缝识别方法研究振动工程学报,1997,10(1):81~85;
    [48] Liew K M, Wang Q. Application of Wavelet Theory for Crack Identification in Structures. Journal of Engineering Mechanics, 1998,124(2): 152 ~ 157;
    [49] 丁幼亮,李爱群,韩晓林.基于小波包分析的结构实时损伤报警数值研究.东南大学学报(自然科学版),2003,33(5):643~646;
    [50] Zhou Z, Noori M, Amand R St. Wavelet-Based Approach for Structural Damage Detection. Journal of Engineering Mechanics, 2000, 126(7):677 ~ 683;
    [51] 李洪泉,董亮,吕西林.基于小波变换的结构损伤识别与试验研究.土木工程学报,2003,36(5):52~57;
    [52] Adriana Hera, Ahikun Hou. Application of Wavelet Approach for ASCE Structural Health Monitoring Benchmark Studies. Journal of Engineering Mechanics, 2004, 130(1) :96~ 104;
    [53] Yang J N, Lei Y, Lin S, Huang N. Hilbert-Huang Based Approach for Structural Damage Detection. Journal of Engineering Mechanics, 2004,130(1):85 ~ 95;
    [54] 刘志刚,王晓茹,钱清泉.小波网络的研究进展与应用.电力系统自动化,2003,27(6):73~79;
    [55] 鞠彦忠,阎贵平,陈建斌,等.用小波神经网络检测结构损伤.工程力学,2003,20(6):176~181;
    [56] Sun Z, Chang C C. Structural Damage Assessment Based on Wavelet Packet Transform. Journal of Structural Engineering, 2002, 128(10):1 354 ~ 1 361;
    [57] Bonato P, Ceravolo R, Stefano A De, Knafilitz M. Bilinear TimeFrequency Transformations in the Analysis of Damaged Structures.Mechanical Systems and Signal Processing, 1997, 11(4):509 ~ 527
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (71) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return