Shang Lingyun, Lu Xiaoyang, Zhou Xuejun. SIZE OPTIMIZATION DESIGN OF SPATIAL LATTICE SHELL BASED ON DISC RETE VARIABLES[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(9): 74-77,98. doi: 10.13204/j.gyjz200409022
Citation:
Shang Lingyun, Lu Xiaoyang, Zhou Xuejun. SIZE OPTIMIZATION DESIGN OF SPATIAL LATTICE SHELL BASED ON DISC RETE VARIABLES[J]. INDUSTRIAL CONSTRUCTION , 2004, 34(9): 74-77,98. doi: 10.13204/j.gyjz200409022
Shang Lingyun, Lu Xiaoyang, Zhou Xuejun. SIZE OPTIMIZATION DESIGN OF SPATIAL LATTICE SHELL BASED ON DISC RETE VARIABLES[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(9): 74-77,98. doi: 10.13204/j.gyjz200409022
Citation:
Shang Lingyun, Lu Xiaoyang, Zhou Xuejun. SIZE OPTIMIZATION DESIGN OF SPATIAL LATTICE SHELL BASED ON DISC RETE VARIABLES[J]. INDUSTRIAL CONSTRUCTION , 2004, 34(9): 74-77,98. doi: 10.13204/j.gyjz200409022
SIZE OPTIMIZATION DESIGN OF SPATIAL LATTICE SHELL BASED ON DISC RETE VARIABLES
1.
1. College of Civil Engineering,Tongji University Shanghai 200092;
2.
2. Mechanical Institute,Shandong College of Architecture and Engineering Jinan 250014;
3.
3. Department of Civil Engineering,Shandong College of Architecture and Engineering Jinan 250014
Received Date: 2003-12-20
Publish Date:
2004-09-20
Abstract
Taking the sizes of cross sections and the volume of ordinary spherical nodes as design variables and overall cost as objective function, the size optimization design of spatial lattice shell is developed by means of two-level algorithem based on discrete variables.The credible structural analysis programme named Algor(Super SAP93) is combined to accomplish the finite element analysis of mathematical model. In addition, zero-step modification is considered to improve the computational precision. At the end, through two numerical examples, the theories above are tested and verified to be correct. Compared with full stress optimization method, the computational results are satisfactory.
References
[2] 孙焕纯,柴山,王跃方.用变量结构优化设计.大连:大连理工大学出版社,1995
张炳华,侯昶.土建结构优化设计.上海:同济大学出版社,1998
[3] 邓华.空间网格结构基于离散变量的优化设计.空间结构,2000,6(3):26~32
[4] 王跃方,孙焕纯.多工况多约束下离散变量桁架结构的拓扑优化设计.力学学报,1995,27(3):365~369
[5] 龚景海,刘锡良.基于遗传算法的网格结构优化方法.天津大学学报,1995,33(5):93~96
[6] 沈祖炎,陈扬骥.网架与网壳.上海:同济大学出版社,1997
[7] 邓华,董石麟.空间网壳结构的形状优化.浙江大学学报(工学版),1999,33(4):371~375
[8] 尹德钰,刘善维,钱若军.网壳结构设计.北京:中国建筑工业出版社,1996
Relative Articles
[1] LAN Xiang, PAN Wen, SU Hexian, LAI Zhengcong, YU Wenzheng. Study on Seismic Simulation Shaking Table Tests of a Complex Museum with Combined Seismic Isolation and Shock Absorpation Structure [J]. INDUSTRIAL CONSTRUCTION, 2023, 53(1): 121-129. doi: 10.13204/j.gyjzG22011107
[2] XUE Hao, LIU Jinyang, LUO Zheng, XUE Jianyang, GE Hongpeng. Parameter Analysis on Damping Effect of a Novel Viscously-Damped Outrigger [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 189-193. doi: 10.13204/j.gyjzG21111515
[5] Peng Zejing, Zhang Xun’an, Lian Yeda, Dong Xiaofeng. STUDY ON THE EFFECTS OF PARAMETERS OF ENERGY DISSIPATION DAMPER ON ITS DAMPING PERFORMANCE [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(7): 52-56. doi: 10.13204/j.gyjz201307012
[6] Bu Zhan-yu, Ding Yong, Xie Xu, Huang Jian-yuan. INVESTIGATION OF DAMPING MATRICES ACCURATE ESTIMATION OF CABLE-STAYED BRIDGES BASED ON NON-PROPORTIONAL DAMPING [J]. INDUSTRIAL CONSTRUCTION, 2012, 42(10): 67-71,149. doi: 10.13204/j.gyjz201210016
[7] Sun Jinkun, Cheng Min, He Xin, Guo Xiaokang. VISCOUS DAMPING SEISMIC DESIGN OF FRAME-SHEAR WALL STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(5): 66-70. doi: 10.13204/j.gyjz201105016
[8] Liang Shahe, Li Aiqun, Zhang Zhiqiang. ANALYTIC METHOD OF MDOF SYSTEM STRUCTURES WITH SUPPLEMENTAL CONTROLLABLE DAMPING-VISCOUS DAMPER [J]. INDUSTRIAL CONSTRUCTION, 2010, 40(5): 43-46. doi: 10.13204/j.gyjz201005008
[9] Han Jun, Li Yingmin, Liu Liping, LüHui. NUMERICAL ANALYSIS ON THE DAMPING EFFECT OF STRUCTURE WITH TUNED LIQUID DAMPERS SUBJECTED TO SEISMIC EXCITATIONS [J]. INDUSTRIAL CONSTRUCTION, 2010, 40(4): 55-59,74. doi: 10.13204/j.gyjz201004013
[10] Ding Yukun, Zhang Yaochun. STUDY ON SEISMIC DESIGN OF THE BEAM CONNECTED BY THE CHEVRON BUCKLING-RESTRAINED BRACES [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(10): 114-119. doi: 10.13204/j.gyjz200910026
[11] Chen Huai, Sheng Zhaohui. SEISMIC ISOLATION ANALYSIS OF MEGA-FRAME-SUB-TRUSS-FRAME SYSTEM [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(2): 76-79. doi: 10.13204/j.gyjz200902011
[12] Guo Meng, Shi Linkai. SEISMIC RESPONSES ANALYSIS OF CONCRETE MULTI-RIB OPEN-WEB FRAME STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(7): 37-40. doi: 10.13204/j.gyjz200907012
[13] Yang Youfa, Cao Jianliang, Zou Yinsheng. DYNAMIC ANALYSIS OF STRUCTURES WITH VISCOUS DAMPERS BASED ON SPACE COOPERATION THEORY [J]. INDUSTRIAL CONSTRUCTION, 2008, 38(7): 38-40. doi: 10.13204/j.gyjz200807009
[14] Zong Gang, Lou Menglin. AN APPLICABLE OPTIMAL DESIGN METHOD OF TUNED LIQUID DAMPERS FOR MULTI-MODE CONTROL [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(2): 32-36,31. doi: 10.13204/j.gyjz200702008
[15] Yao Qianfeng, Lu Junlong, Zhang Yin. RESEARCH ON SEISMIC REINFORCEMENT METHODS FOR MASONRY PAGODAS [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(9): 115-118. doi: 10.13204/j.gyjz200709027
[16] Zhong Zhenyu. THE EFFECT OF DAMPING SYSTEM PARAMETERS OF CONVERSION LAYER FOR BOTTOM FRAME ON ASEISMIC PERFORMANCE [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(7): 44-46. doi: 10.13204/j.gyjz200707014
[17] Zhang Congjun, Li Aiqun, Zhao Ming. SUMMARY OF RESEARCH ON AND APPLICATIONS OF PASSIVE ENERGY DISSIPATION SYSTEMS OF MILD STEEL DAMPER [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(9): 17-21.
[18] Chang Yejun, Xu Qingzheng, Zhang Fuyou, Cheng Wenrang. THE REDUCTION PRINCIPLE OF EARTHQUAKE AND CALCULATION OF SEISMIC COEFFICIENT OF ENGINEERING STRUCTURE USING VISCOELASTIC DAMPER [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(6): 21-25. doi: 10.13204/j.gyjz200506006
[19] Zuo Xiaobao, Li Aiqun, Ni Lifeng, Chen Qingfu. SEISMIC RESPONSE ANALYSIS FOR FRAME STRUCTURE WITH SUPER-ELASTIC SHAPE MEMORY ALLOY DAMPER [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(10): 13-16,20. doi: 10.13204/j.gyjz200410004
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 0 2 4 6 8
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 29.4 % FULLTEXT : 29.4 % META : 70.6 % META : 70.6 % FULLTEXT META
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 9.8 % 其他 : 9.8 % China : 2.0 % China : 2.0 % 乐山 : 2.0 % 乐山 : 2.0 % 北京 : 5.9 % 北京 : 5.9 % 南京 : 9.8 % 南京 : 9.8 % 张家口 : 7.8 % 张家口 : 7.8 % 杭州 : 2.0 % 杭州 : 2.0 % 湖州 : 2.0 % 湖州 : 2.0 % 芒廷维尤 : 31.4 % 芒廷维尤 : 31.4 % 衢州 : 5.9 % 衢州 : 5.9 % 西宁 : 17.6 % 西宁 : 17.6 % 郑州 : 3.9 % 郑州 : 3.9 % 其他 China 乐山 北京 南京 张家口 杭州 湖州 芒廷维尤 衢州 西宁 郑州