Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 34 Issue 9
Dec.  2014
Turn off MathJax
Article Contents
Liu Yongjian, Li Zhangming, Zhang Jianlong. RESEARCH ON MULTI-STEP PREDICTION OF DEEP EXCAVATION DEFORMATION BASED ON RECURRENT NEURAL NETWORK[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(9): 22-25. doi: 10.13204/j.gyjz200409007
Citation: Liu Yongjian, Li Zhangming, Zhang Jianlong. RESEARCH ON MULTI-STEP PREDICTION OF DEEP EXCAVATION DEFORMATION BASED ON RECURRENT NEURAL NETWORK[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(9): 22-25. doi: 10.13204/j.gyjz200409007

RESEARCH ON MULTI-STEP PREDICTION OF DEEP EXCAVATION DEFORMATION BASED ON RECURRENT NEURAL NETWORK

doi: 10.13204/j.gyjz200409007
  • Received Date: 2003-12-25
  • Publish Date: 2004-09-20
  • An artificial neural network is introduced in the light of the complexity, nonlinearity of a deep excavation and the importance of multi-step prediction of its deformation.The defect of multi-step prediction by BP network is analyzed and a multi-step prediction model of an excavation deformation based on recurrent neural networks is also proposed.The reliability and practicability of the multi-step prediction of the excavation deformation by the recurrent neural networks are demonstrated through the multi-step prediction of the deformation of deep excavation in soft soil.It can be widely used for the muti-step prediction in other fields.
  • loading
  • [2] 孙海涛,吴限.深基坑工程变形预报神经网络法的初步研究.岩土力学,1998,19(4 ):63~68
    张立明.人工神经网络的模型及其应用.上海:复旦大学出版社,1993
    [3] 袁金荣,池毓蔚,刘学增.深基坑墙体位移的神经网络动态预测.同济大学学报,2000, 28(3):282~286
    [4] 张玉祥.岩土工程时间序列预报问题初探.岩石力学与工程学报,1998,17(5):552~557
    [5] 赵其华,孙均,徐伟.地连墙的神经网络预测研究.成都理工学院学报,2002,29( 5):28~585
    [6] 温广瑞,屈梁生.基于递归神经网络的多步预报方法.西安交通大学学报,2002,36 ():722~725
    [7] 张治强,冯夏庭,杨成祥,等.非线性位移时间序列分析的遗传-神经网络方法.东北大学学报,1999,20(4):422~425
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (81) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return