Zhang Changrui, Tian Yong, Hu Yingjie, Ren Yajing. TRANSFORMATION DESIGN OF TIANJIN MEIYA AUTOMOBILE PLANT[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(11): 178-181. doi: 10.13204/j.gyjz2001411035
Citation:
Zhou Xiaoguo, Zhang Fuxing, Zhu Jiafeng, Peng Xiaolong. SENSITIVITY ANALYSIS OF PARAMETERS OF CABLES FOR STEEL MEGA FRAME AND CABLE-BRACED STRUCTURE[J]. INDUSTRIAL CONSTRUCTION , 2014, 44(12): 132-136. doi: 10.13204/j.gyjz2001412022
Zhang Changrui, Tian Yong, Hu Yingjie, Ren Yajing. TRANSFORMATION DESIGN OF TIANJIN MEIYA AUTOMOBILE PLANT[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(11): 178-181. doi: 10.13204/j.gyjz2001411035
Citation:
Zhou Xiaoguo, Zhang Fuxing, Zhu Jiafeng, Peng Xiaolong. SENSITIVITY ANALYSIS OF PARAMETERS OF CABLES FOR STEEL MEGA FRAME AND CABLE-BRACED STRUCTURE[J]. INDUSTRIAL CONSTRUCTION , 2014, 44(12): 132-136. doi: 10.13204/j.gyjz2001412022
SENSITIVITY ANALYSIS OF PARAMETERS OF CABLES FOR STEEL MEGA FRAME AND CABLE-BRACED STRUCTURE
Abstract
To investigate the influence of two parameters of cable pretension and diameter,on the seismic behavior of
a steel mega frame and cable-braced structure and obtain appropriate values of these two parameters,the Pushover
analyses were made for typical steel mega frame and cable-braced structures with different pretensions and diameters
of cables. It was examined the effects of different cable pretension and diameter on the failure modes,initial lateral
stiffnesses,ultimate loads,top displacements and the base shears at performance points,and maximum inner-story
drift angles of the structure,it could be found that the cable pretensions only have a limited impact on the maximum
inner-story drift angle,and their influences on other comprehensive performance of the structure could be ignored,
and the cable diameter had a small impact on the failure mode when its increment did not exceed 100%,but the
cable diameter change had significant effect on the other comprehensive properties.
References
Relative Articles
[1] LI Xiang, GUO Yilu, ZHANG Zili, MENG Xinmiao, JI Xiaodong. Investigation of Factors Influencing the Compressive Strength of Magnesium Phosphate Cement Mortars [J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 185-190. doi: 10.3724/j.gyjzG24012606
[2] LI Chunhua, HE Sheng, XIONG Anping. Eigenvalue Imperfection Modal Method for Controlling Vertical Geometric Imperfections [J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 175-179. doi: 10.13204/j.gyjzG21083004
[3] LI Jianfei. SENSITIVITY ANALYSIS OF FACTORS EFFECTING 3D STABILITY OF SLOPES REINFORCED WITH ANTI-SLIDE PILES [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 156-164. doi: 10.13204/j.gyjzG19083102
[5] Lu Xinying, Li Yang, Li Yuanjin. STUDY OF GALVANIC CORROSION SENSITIVITY BETWEEN ANY COUPLE OF STUD,WELDMENT,OR BEAM [J]. INDUSTRIAL CONSTRUCTION, 2015, 45(8): 125-128. doi: 10.13204/j.gyjz201508023
[6] Sun Min, Tong Liping, Zhang Yuguo. SENSITIVITY RESEARCH OF DAMPING ENERGY DISSIPATION FOR SLIDING BASE-ISOLATED STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2015, 45(5): 55-60. doi: 10.13204/j.gyjz201505013
[8] Zhu Fengbin, Miao Linchang, Gu Huanda, Lin Shuixian. SENSITIVITY ANALYSIS OF DESIGN PARAMETERS OF COMPOSITE SOIL NAILED WALL WITH BORED PILES IN DEEP EXCAVATION [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 77-83. doi: 10.13204/j.gyjz201311018
[9] Weng Guangyuan, Wang Sheliang. VERTICAL SEISMIC RESPONSE ANALYSIS OF LONG-SPAN SPHERICAL SHELL STRUCTURE SUBJECT TO INCONSISTENT EXCITATION [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(8): 91-95. doi: 10.13204/j.gyjz201108022
[10] Xin Li, Wang Min, Zeng Fansheng, Liang Xingwen. MODAL PUSHOVER ANALYSIS IMPROVED BY CAPACITY-SPECTRUM THEORY [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(1): 51-56. doi: 10.13204/j.gyjz201101014
[11] Zhou Hongbo, Cai Laibing, Gao Wenjie. RISK IDENTIFICATION AND SENSITIVITY ANALYSIS OF LEAKAGE OF SLURRY WALL FOR DEEP EXCAVATIONS [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 84-87. doi: 10.13204/j.gyjz200904019
[12] Zhang Jizhou, Miao Linchang, Wang Huajing. ANALYSIS OF PARAMETERS SENSITIVITY OF DUNCAN-CHANG MODEL AND STUDY ON THE CONTROLLING DEFORMATION [J]. INDUSTRIAL CONSTRUCTION, 2008, 38(3): 75-79. doi: 10.13204/j.gyjz200803021
[13] Zhang Tao, Qin Weizu. RESTRAINT DEGREE AND EVALUATION OF CRACKING SENSITIVITY IN EARLY CONCRETE [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(3): 47-50. doi: 10.13204/j.gyjz200603013
[14] Zhang Tao, Qin Weizu. CREEP OF CONCRETE AT EARLY AGE AND ITS EFFECT ON CRACKING SENSITIVITY [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(8): 89-92,105. doi: 10.13204/j.gyjz200508022
[15] Zhao Xianzhong, Jiang Xiaoying, Zhao Zhaoyi. GLOBAL STABILITY ANALYSIS ON SINGLE-LAYER RETICULATED CYLINDRICAL SHELLS OF CHENGDU AIRPORT TERMINALS [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(7): 61-63. doi: 10.13204/j.gyjz200407017
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 0 2 4 6 8
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 17.6 % FULLTEXT : 17.6 % META : 82.4 % META : 82.4 % FULLTEXT META
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 13.2 % 其他 : 13.2 % 上海 : 1.5 % 上海 : 1.5 % 北京 : 11.8 % 北京 : 11.8 % 台州 : 1.5 % 台州 : 1.5 % 张家口 : 10.3 % 张家口 : 10.3 % 格兰特县 : 1.5 % 格兰特县 : 1.5 % 湘潭 : 1.5 % 湘潭 : 1.5 % 芒廷维尤 : 26.5 % 芒廷维尤 : 26.5 % 芝加哥 : 1.5 % 芝加哥 : 1.5 % 西宁 : 29.4 % 西宁 : 29.4 % 重庆 : 1.5 % 重庆 : 1.5 % 其他 上海 北京 台州 张家口 格兰特县 湘潭 芒廷维尤 芝加哥 西宁 重庆