CN 11-2068/TU
ISSN 1000-8993
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Login
Register
E-alert
Home
About Journal
Journal Online
Special Topics
Current Issue
Archive
Top Down
Top View
Top Cited
Editorial Board
Authors' Center
Academic Ethics
Regulation and Templates
Figures and Tables Regulation
Copyright Transfer Statement
Subscription
FAQs
中文
Login
Register
E-alert
All
Title
Author
Keyword
Abstract
DOI
Category
Address
Fund
Home
About Journal
Journal Online
Special Topics
Current Issue
Archive
Top Down
Top View
Top Cited
Editorial Board
Authors' Center
Academic Ethics
Regulation and Templates
Figures and Tables Regulation
Copyright Transfer Statement
Subscription
FAQs
中文
PDF
Cite
Share
facebook
twitter
google
linkedin
All
Title
Author
Keyword
Abstract
DOI
Category
Address
Fund
Volume 29
Issue 2
Jan. 2015
Turn off MathJax
Article Contents
References
Article Navigation
>
INDUSTRIAL CONSTRUCTION
>
1999
>
29(2): 19-21
PDF
( 0 KB)
doi:
10.13204/j.gyjz199902005
Publish Date:
1999-02-20
Abstract
FullText(HTML)
References
(0)
References
Relative Articles
Relative Articles
[1]
FAN Lijun.
Identification of Crack in Concrete Structures Based on MobileNetV2 of Lightweight Convolutional Network
[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(7): 231-236.
doi:
10.13204/j.gyjzG23021618
[2]
LIU Jian, ZHAO Yu, WANG Fei-cheng, LIU Zhang-jiang, CENG Rong-sen, ZHOU Guan-gen, QI Yu-liang, REN Da, CHEN Yuan, XIAO Hai-peng, PENG Lin-miao.
Research on Neural Network Analysis Model of Bearing Capacity of Steel Tubed Steel Reinforced Concrete Cylinder
[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 147-152,120.
doi:
10.13204/j.gyjzg22010519
[3]
LI Shujin, XIONG Shuqi, FAN Peiran, WANG Gang.
Application Research on Deep Convolutional Neural Network Considering Residual Learning in Structural Damage Identification
[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(7): 192-198.
doi:
10.13204/j.gyjzg21101009
[4]
WANG Hai-bo.
A Prediction Model for Bond Strength Between Concrete and Steel Bars Based on Bayesian Neural Networks
[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 87-93.
doi:
10.13204/j.gyjzg22031516
[5]
LU Jiaqi, YAO Zhidong.
A CONCRETE CRACK RECOGNITION METHOD BASED ON PROGRESSIVE CASCADE CONVOLUTION NEURAL NETWORK
[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 30-36.
doi:
10.13204/j.gyjzG20112504
[6]
YANG Yuan, CUI Qiandao, LIAN Jijian, LIU Hongbo, ZHOU Guangen, CHEN Zhihua.
LSTM-BASED DAMAGE PREDICTION AND ASSESSMENT OF SPATIAL FRAME STRUCTURE
[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 203-208.
doi:
10.13204/j.gyjzG20092308
[7]
Zhou Qiujuan, Chen Xiaoping, Zeng Lingling.
RESEARCH ON NEURAL NETWORK MODEL OF DEFORMATION BEHAVIOR OF SOFT SOIL
[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(6): 48-53.
doi:
10.13204/j.gyjz200806014
[8]
Zhang Bin, Fan Jin.
PREDICTING THE ULTIMATE BOND STRENGTH OF CFRP BONDED TO CONCRETE USING ARTIFICIAL NEURAL NETWORKS
[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(3): 66-71,41.
doi:
10.13204/j.gyjz200703017
[9]
Jiao Junting, Yu Linchong.
FORECASTING THE BEARING CAPACITY OF REINFORCED CONCERETE COLUMNS UNDER BIAXIAL BENDING AND COMPRESSION BASED ON ARTIFICIAL NEURAL NETWORK
[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(1): 27-29.
doi:
10.13204/j.gyjz200601009
[10]
Gao Huadong, Huo Da, Tao Lianjin.
APPLICATION OF CHAOTIC NEURAL NETWORK METHOD IN THE LATERAL DISPLACEMENT PREDICATION OF DEEP EXCAVATION
[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(4): 55-59.
doi:
10.13204/j.gyjz200504016
[11]
Liu Di, Wang Quangfeng, Yue Qingrui, Yang Yongxin.
FORECASTING THE COMPRESSION-RESISTING OF SQUARE SECTION-CONCRETE COLUMN BY BP NEURAL NETWORK
[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(1): 75-78.
doi:
10.13204/j.gyjz200501024
[12]
Hong Jinxiang, Huang Wei, Miao Changwen.
STUDY ON PREDICTION OF CONCRETE STRENGTH USING WAVELET NEURAL NETWORK
[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(7): 47-49.
doi:
10.13204/j.gyjz200407013
[13]
Ling Daijian.
A METHOD OF DAYLIGHT DESIGN OF MILL BUILDING BASED ON ANN
[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(11): 24-26.
doi:
10.13204/j.gyjz200411007
Supplements
(0)
Cited By
Proportional views
Proportional views
Created with Highcharts 5.0.7
Amount of access
Chart context menu
Abstract Views, HTML Views, PDF Downloads Statistics
Abstract Views
HTML Views
PDF Downloads
2024-04
2024-05
2024-06
2024-07
2024-08
2024-09
2024-10
2024-11
2024-12
2025-01
2025-02
2025-03
0
1
2
3
4
5
Created with Highcharts 5.0.7
Chart context menu
Access Class Distribution
FULLTEXT
: 11.9 %
FULLTEXT
: 11.9 %
META
: 88.1 %
META
: 88.1 %
FULLTEXT
META
Created with Highcharts 5.0.7
Chart context menu
Access Area Distribution
其他
: 5.1 %
其他
: 5.1 %
北京
: 25.4 %
北京
: 25.4 %
张家口
: 1.7 %
张家口
: 1.7 %
杭州
: 1.7 %
杭州
: 1.7 %
芒廷维尤
: 30.5 %
芒廷维尤
: 30.5 %
芝加哥
: 3.4 %
芝加哥
: 3.4 %
西宁
: 32.2 %
西宁
: 32.2 %
其他
北京
张家口
杭州
芒廷维尤
芝加哥
西宁
Catalog
通讯作者:
陈斌, bchen63@163.com
1.
沈阳化工大学材料科学与工程学院 沈阳 110142
本站搜索
百度学术搜索
万方数据库搜索
CNKI搜索
Get Citation
PDF
XML
Article Metrics
Article views (
92
)
PDF downloads(
252
)
Cited by(
)
Proportional views
Related
×
Close
Export File
Citation
Format
RIS(for EndNote,Reference Manager,ProCite)
BibTex
Txt
Content
Citation Only
Citation and Abstract
/
DownLoad:
Full-Size Img
PowerPoint
Return
Return