Crack Control Techniques for Surface Concrete of Seaport High-Piled Wharfs Using Thermoplastic GFRP Rebars
-
摘要: 针对海港高桩码头现浇面层受混凝土干燥收缩应力引起的开裂问题,通过理论分析、室内试验、数值模拟等方法,研究了在单层钢筋的基础上增配热塑性玻璃纤维增强复合材料(GFRP)筋分散集中应力以实现有害裂缝向无害裂缝转变的技术措施,并在福建省可门泊位面层混凝土施工中进行应用。结果表明:在60 ℃的模拟盐碱溶液中(pH≈13.4)浸泡90 d后,筋材的强度保留率仍能达到76.3%;设计直径12 mm、布设间距10 cm的热塑性GFRP筋,铺设在混凝土保护层2 cm的位置,可有效降低混凝土表面最大拉应力;在强风强日照条件下,复合热塑性GFRP筋及混凝土施工质量控制措施可将混凝土表面最大收缩应变控制在120×10-6之内;持续监测6个月后的面层外观质量良好,龟裂面积得到有效减少,未发现有害裂缝产生。Abstract: Addressing the cracking issue caused by concrete drying shrinkage stress in the cast-in-place surface layer of high-piled wharfs in seaports, technical measures were studied through theoretical analysis, laboratory tests, and numerical simulations. These measures involve adding thermoplastic Glassfiber-Reinforced Polymer (GFRP) rebars to the design based on the conventional single-layer steel reinforcement to disperse concentrated stress, thereby transforming harmful cracks into harmless ones. These measures were applied in the concrete construction of the berth surface layer in Kemen, Fujian Province. The results showed that after soaking in a simulated saline-alkali solution (pH≈13.4) at 60 ℃ for 90 days, the strength retention rate of the reinforcement material could still reach 76.3%. Using thermoplastic GFRP rebars with a diameter of 12 mm and a spacing of 10 cm, placed 2 cm away from the concrete protective layer, effectively reduced the maximum tensile stress on the concrete surface. Combined with construction quality control measures for thermoplastic GFRP rebars and concrete, the maximum shrinkage strain on the concrete surface could be controlled within 120×10⁻⁶ under strong wind and intense sunlight conditions. After six months of continuous monitoring, the appearance quality remained good, the cracking area was effectively reduced, and no harmful cracks were observed.
-
[1] 林诗翔,王保才. 高桩码头现浇面层裂缝控制[J]. 中国港湾建设,2016,36(11):68-70. [2] 李娜. 码头面层裂缝修复及修复效果检验[J]. 中国港湾建设,2014(10):60-62. [3] 秦飞. 高桩码头混凝土面层裂缝的预防措施[J]. 中国港湾建设,2011(3):71-72. [4] 宋雪峰,李超,邓春林. 高桩墩台式码头面层混凝土裂缝成因及控制措施[J]. 水运工程,2015(3):104-108. [5] 张伟,张怡戈,王新刚. 高桩码头面层现浇混凝土裂缝成因分析及控制措施[J]. 混凝土,2013(7):152-154. [6] 谢彪,徐文,张坚,等. C50低温升、低收缩海工大体积混凝土抗裂性能研究与应用[J]. 混凝土,2021(9):98-101. [7] 侯佑胜,张兴斌,张家臻,等. 核电站大体积混凝土基础裂缝控制理论与方法[J]. 工业建筑,2025,55(1):182-187. [8] 王成启,尹海卿. 混凝土成熟度在码头面层切缝中的应用[J]. 水运工程,2010(11):141-144. [9] 霍丽娜. 桥梁桥面补强层加固施工技术研究[J]. 交通世界,2023(11):141-143. [10] 王晓晖,顾祥奎,陆敏. 全自动化集装箱码头面层结构设计[J]. 水运工程,2016(9):130-133. -
点击查看大图
计量
- 文章访问数: 12
- HTML全文浏览量: 2
- PDF下载量: 1
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: