Research on Digital Manufacturing and Production Lines for High-Efficiency & High-Performance Standardized Profile Steel Components
-
摘要: 型材钢构件标准化程度高、施工便捷,属于绿色高效能钢材,目前加工方式存在劳动密集、效率低等问题。实现型材钢构件数字化制造关键在于先进制造工艺、生产控制系统与智能装备相结合,基于三维模型驱动和视觉传感技术,形成型材钢构件数字化切割、焊接、表面清洁、喷涂工艺及先进智能装备。开发钢结构制造材料云虚拟系统,打通业财与物联网,实现从钢材下单到车间下料全流程数字化管理。建立型钢构件生产线制造执行系统,实时采集加工设备数据,可视化监控构件加工状态。最后通过工程应用对型材钢构件数字化制造及生产线进行验证,以期为业内同行开展相关研究与应用工作提供参考。Abstract: Profile steel components, characterized by their high degree of standardization and construction convenience, are considered green and high-efficiency & high-performance steel materials. However, the current processing methods have problems such as labor intensity and low efficiency. The key to realizing the digital manufacturing of profile steel components lies in the combination of advanced manufacturing processes, production control systems, and intelligent equipment. Based on three-dimensional model-driven and visual sensing technologies, this paper developed digital cutting, welding, surface cleaning, spraying processes, and advanced intelligent equipment for profile steel components. A cloud virtual system for manufacturing materials of steel structures was developed to connect the business, finance, and the Internet of Things, realizing the digital management of the entire process from placing orders for steel materials to blanking in the workshop. A manufacturing execution system for the production line of profile steel components was established to collect data of processing equipment in real time and conduct visual monitoring of the processing status of components. Finally, the digital manufacturing of profile steel components and the production line were verified through engineering applications, providing a reference for industry peers to carry out related research and application work.
-
Key words:
- profile steel components /
- digital manufacturing /
- model-driven /
- visual sensing /
- intelligent equipment
-
[1] CHRYSSOLOURIS G, MAVRIKIOS D, PAPAKOSTAS N, et al. Digital manufacturing: History, perspectives, and outlook[J]. Proceedings of the Institution of Mechancial Engineers Part B Journalof Engineering Manufacture, 2009, 223(5): 451-462. [2] ZHOU JIA, LI P G, ZHOU Y H, et al. Toward new-generation intelligent manufacturing[J]. Engineering, 2018, 4(1): 11-20. [3] 李庆伟, 岳清瑞, 冯鹏, 等. 双碳目标下钢结构行业发展现状及展望[J]. 建筑钢结构进展, 2022, 24(4): 1-6. [4] 中国钢铁工业协会钢铁材料应用推广中心H型钢工作组. 建筑用热轧H型钢应用推广思路与建议[N]. 中国冶金报, 2025-03-26(004). [5] LIU Y H, LI M K, WONG B C L, et al. BIM-BVBSintegration with open BIM standards for automatic pre-abrication of steel reinforcement[J]. Automation in Construction, 2021, 125, 103654. [6] 陈振明, 王朋, 肖运通, 等. 建筑钢结构智能制造研究及进展[J]. 建筑钢结构进展, 2025, 27(1): 15-23. [7] 唐兵传, 刘界鹏. 钢结构智能制造技术的发展[J]. 钢结构(中英文), 2024, 39(10): 119-126. [8] 李晓明, 郁银泉, 高晓明. 工业化建筑部品与构配件制作关键技术研究[J]. 工业建筑, 2020, 50(8): 1-4. [9] BICOCCHI N, CABRI G, MANDREOLI F, et al. Dynamic digital factories for agile supply chains: an architectural approach[J]. Journal of Industrial Information Integration, 2019(15): 111-121. [10] 刘昕华, 陈榆木, 张云龙, 等. 智能化钢构厂生产线工艺在隧道施工中的应用实践[J]. 山西建筑, 2024, 50(23): 169-171. -
点击查看大图
计量
- 文章访问数: 32
- HTML全文浏览量: 8
- PDF下载量: 1
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: