3D FEM Analysis of Excavation-Induced Effects on an Overlying Heritage Structure in Soft Soil
-
摘要: 上海黄浦区160街坊改造项目涉及在历史建筑下方开发地下空间,创新性地利用基坑的首道支撑作为历史建筑平移平台并与基坑开挖同步地往复平移,成功实现在基坑正上方保留历史建筑的情况下完成基坑开挖和地下结构建造。建立考虑土与基坑支护结构及地上历史建筑共同作用的复杂三维有限元模型,采用能考虑土的小应变特性的HS-Small高级本构模型并确定合理的计算参数,对历史建筑下方基坑开挖进行全过程模拟,通过对比基坑变形计算值和实测值验证分析方法的合理性。在此基础上,系统分析基坑开挖对上部保留历史建筑物的影响,结果表明,建筑物的变形和受力可控,安全得到了保障,也说明基于小应变本构模型的三维分析能较好地评价地下空间开发对上部建筑物的影响。
-
关键词:
- 既有建筑下地下空间开发 /
- 历史建筑 /
- 基坑 /
- 平移 /
- 三维有限元
Abstract: The Shanghai Huangpu District 160 Neighborhood Reconstruction Project involved the development of underground space beneath a historical building. It innovatively used the first support of the foundation pit as a translation platform for the historical building, with reciprocating lateral movement synchronized to the foundation pit excavation. It successfully realized the completion of foundation pit excavation while preserving the historical building directly above it. A complex three-dimensional finite element model was established, considering the interaction among the soil, foundation pit supporting structure, and the building. The HS-Small advanced constitutive model considering the small strain characteristics of soil was adopted, and reasonable calculation parameters were determined. A full-process simulation of foundation pit excavation beneath the historical building was carried out. The rationality of the analytical method was verified by comparing the calculated and measured values of foundation pit deformation. On this basis, the impact of foundation pit excavation on the overlying historical building was analyzed. The results showed that the deformation and stress of the building were controllable, ensuring its safety. It also demonstrated that a three-dimensional analysis based on the small-strain constitutive model could effectively evaluate the impact of deep excavation on the overlying building. -
[1] 王曙光,李湛,李钦锐,等. 既有建筑地下空间开发现状与工程实践[J]. 建筑,2022,(7):48-51. [2] 王卫东,丁文其,杨秀仁,等. 基坑工程与地下工程:高效节能、环境低影响及可持续发展新技术[J]. 土木工程学报,2020,53(7):78-98. [3] 徐中华,王卫东,王建华. 逆作法深基坑对周边保护建筑影响的实测分析[J]. 土木工程学报,2009,42(10):88-96. [4] 李靖,徐中华,王卫东. 基础托换对基坑周边建筑物变形控制作用的三维有限元分析[J]. 岩土工程学报,2017,39(增刊2):157-161. [5] 张珂峰,吴昌将,易礼.“两墙合一”地下连续墙基坑开挖对邻近建筑的变形影响与实测分析[J]. 建筑结构,2020,50(20):128-132. [6] 冉启仁,王旭,王博林,等. 基坑开挖对邻近建筑桩基弯矩和变形影响的模型试验[J]. 岩土工程学报,2021,43(增刊1):132-137. [7] 杨忠平,刘浩宇,周小涵,等. 深厚淤泥土深长基坑开挖对邻近建筑的影响[J]. 地下空间与工程学报,2022,18(3):1015-1024. [8] 王卫东,胡耘,沈健,等. 软土地基历史建筑地下空间开发的设计与实践[J]. 岩土工程学报,2023,45(12):2445-2453. [9] SIMPSON B. Development and application of a new soil model for prediction of ground movements[C]//Thomas Telford,Proceedings of the Wroth Memorial. London,1993:628-643. [10] STALLEBRASS S E,TAYLOR R N. The development and evaluation of a constitutive model for the prediction ground movements in overconsolidated clay[J]. Geotechnique,1997,47(2):235-253. [11] KUNG T C. Surface settlement induced by excavation with consideration of small strain behavior of Taipei silty clay[D]. Taipei:National Taiwan University of Science and Technology,2007. [12] 徐中华,王卫东. 敏感环境下基坑数值分析中土体本构模型的选择[J]. 岩土力学,2010,31(1):258-264. [13] 王浩然. 上海软土地区深基坑变形与环境影响预测方法研究[D]. 上海:同济大学,2012. [14] 王卫东,王浩然,徐中华. 基坑开挖数值分析中土体硬化模型参数的试验研究[J]. 岩土力学,2012,33(8):2283-2290. [15] 张娇. 上海软土小应变特性及其在基坑变形分析中的应用[D]. 上海:同济大学,2017. [16] 上海市住房和城乡建设管理委员会. 基坑工程技术标准:DG/TJ 08-61—2018[S]. 上海:同济大学出版社,2018. [17] 徐中华,王建华,王卫东. 上海地区深基坑工程中地下连续墙的变形性状[J]. 土木工程学报,2008,41(8):81-86. [18] 徐中华. 上海地区支护结构与主体地下结构相结合的深基坑变形性状研究[D]. 上海:上海交通大学,2007. -
点击查看大图
计量
- 文章访问数: 72
- HTML全文浏览量: 15
- PDF下载量: 2
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: