Research on the Cooling Performance of Thermosyphon-Ventilated Plate Composite Subgrade in Permafrost Regions
-
摘要: 为研究多年冻土区热棒-通风板复合路基的降温效果,在青海省S224线二道沟兵站109岔口至治多段公路开展现场试验研究。通过构建“主动导冷-被动散热-冷量储备”三位一体调控模式,实现了路基温度场的立体优化。根据现场监测的温度数据及地温,探究热棒-通风板复合路基和通风板路基的降温效果。结果表明:复合路基通过“热棒相变制冷+通风板强化散热”协同机制,在寒季将传热影响深度扩展至-6 m,形成2~6 m深度的核心冷量储备层,其冷量储备达5220 J/kg,较纯通风板路基提升35.5%。此外,复合路基使冻土上限稳定在距路面2.0~2.5 m,较纯通风板路基抬升0.5 m;热棒系统在寒季保持连续运行状态达215 d。该研究为青藏高原年平均气温≤-1 ℃的岛状冻土区及连续冻土区(尤其含冰量较高的饱冰冻土和富冰冻土地段)的公路建设提供了“热棒相变制冷+通风板强化散热”协同作用的新的技术方案。Abstract: To investigate the cooling performance of thermosyphon-ventilated plate composite subgrade in permafrost regions, field experiments were conducted on a highway section between the 109 Junction at Erdaogou Military Station and Zhiduo along the S224 Line in Qinghai Province. The research reveals that the composite structure achieves three-dimensional optimization of the subgrade temperature field by establishing a tri-integrated regulation mode of "active cooling guidance - passive heat dissipation - cooling energy reserve". Based on the field-monitored temperature data and ground temperature measurements, this study analyzed the cooling performance of both the thermosyphon-ventilated plate composite subgrade and the ventilated plate subgrade. The research findings indicated that the composite subgrade, through a synergistic mechanism of "thermosyphon phase-change cooling + ventilated plate-enhanced heat dissipation", extended the heat transfer influence depth to -6 m during the cold season, forming a core cooling reserve layer spanning 2 to 6 meters in depth with a cooling energy reserve of 5220 J/kg, representing a 35.5% increase compared to the ventilated plate subgrade alone. Moreover, monitoring data revealed that the composite subgrade stabilized the permafrost table at a distance of 2.0 to 2.5 meters from the road surface, representing a 0.5 m uplift compared to the ventilated plate subgrade alone. The thermosyphon system maintained continuous operation for 215 days during the cold season. This study proposes a novel technical solution utilizing the synergistic effect of "thermosyphon phase-change cooling + ventilated plate-enhanced heat dissipation" for highway construction in discontinuous and continuous permafrost regions (particularly ice-rich and ice-saturated frozen soil areas) where the annual average ground temperature on the Qinghai-Tibet Plateau is ≤ -1 ℃.
-
Key words:
- permafrost region /
- thermosyphons /
- ventilated plate /
- cooling performance /
- cooling energy reserve
-
[1] 高峰,曾宪璋,钟闻华,等. 多年冻土区道路工程病害处治技术研究进展与展望[J]. 中外公路,2024,44(5):1-16. [2] 史健宗,南卓铜,石伟,等. 青藏高原多年冻土本底调查信息系统[J]. 遥感技术与应用,2010,25(5):725-732. [3] 武憼民,汪双杰,章金钊. 多年冻土地区公路工程[M]. 北京:人民交通出版社,2005. [4] 全球变暖将导致青藏高原北缘暖湿化[J]. 今日科技,2024(5):57. [5] 吴晓东,吴通华. 多年冻土退化对气候和人类产生重要影响[J]. 自然杂志,2020,42(5):425-431. [6] 安晓冬. 深季节冻土区路基保温措施的应用研究[D]. 石家庄:石家庄铁道大学,2016. [7] MU YH,MA W,YANG Z H,et al. Field observations of near-surface wind flow across expressway embankment on the Qinghai-Tibet Plateau[J]. Engineering,2022,14(7):169-180. [8] ZHOU W T,MA T,YIN X F,et al. Dramatic carbon loss in a permafrost thaw slump in the Tibetan Plateau is dominated by the loss of microbial necromass carbon[J]. Environmental Science& Technology,2023,57(17):6761-7102. [9] LIU M,NIU F,LUO J,et al. Performance,applicability,and optimization of a new slope cooling and protection structure for road embankment over warm permafrost[J]. International Journal of Heat and Mass Transfer,2020,162,120388. [10] 景晶晶,吴志坚,丁万鹏,等. 基于探地雷达测量的青藏公路多年冻土区热棒路基降温效果分析[J]. 冰川冻土,2024,46(6):1728-1740. [11] 刘金修,李泽,李钰,等. 多年冻土区热棒路基降温调控效能研究[J]. 公路,2021,66(2):20-27. [12] 何宗杭. 青藏高原多年冻土区宽幅通风管路基降温技术研究[D]. 成都:四川农业大学,2021. [13] 张会建,袁堃,董元宏,等. 多年冻土区宽幅XPS保温板路基传热特征研究[J]. 路基工程,2019(6):6-12. [14] 王青志,房建宏,徐安花,等. 高温不稳定多年冻土区片块石路基热状态变化分析[J]. 公路工程,2019,44(6):66-70. [15] 程国勇,马少敏,杨依恒. 多年冻土区机场跑道L型热管+保温板温控技术[J]. 中国民航大学学报,2022,40(3):23-29. [16] 李越,孙红,葛修润,等. 路基宽度对多年冻土区透壁式通风管-块石复合路基降温效应的影响[J]. 公路交通科技,2019,36(4):28-35. [17] 刘娟. 青藏铁路楚玛尔河地区复合路基地温状况分析[J]. 铁道标准设计,2013(12):40-42,46. [18] 郭宏新,马巍,熊治文. 热棒工程[M]. 北京:人民交通出版社股份有限公司,2016. [19] 孔森,温智,吴青柏,等. 热管在青藏高原多年冻土区高速公路应用中的适用性评价[J]. 中南大学学报(自然科学版),2019,50(6):1384-1391. [20] 杨科. 多年冻土路基温度场变化及数值模拟[J]. 中国科技信息,2022(14):81-83. [21] 沈世鑫. 多年冻土地区的公路路基温度场研究[J]. 公路工程,2019,44(3):246-252. [22] 李永强. 青藏铁路多年冻土区热棒路基的设计计算[J]. 铁道工程学报,2007(11):32-36. -
点击查看大图
计量
- 文章访问数: 63
- HTML全文浏览量: 13
- PDF下载量: 4
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: