中国科技核心期刊
中国建筑科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SSG-YOLOv8n模型的砖砌墙体裂缝形态识别方法

陈逵 赵亚伟 王光明 梁建国

陈逵, 赵亚伟, 王光明, 梁建国. 基于SSG-YOLOv8n模型的砖砌墙体裂缝形态识别方法[J]. 工业建筑, 2025, 55(7): 152-161. doi: 10.3724/j.gyjzG25051205
引用本文: 陈逵, 赵亚伟, 王光明, 梁建国. 基于SSG-YOLOv8n模型的砖砌墙体裂缝形态识别方法[J]. 工业建筑, 2025, 55(7): 152-161. doi: 10.3724/j.gyjzG25051205
CHEN Kui, ZHAO Yawei, WANG Guangming, LIANG Jianguo. A Method for Crack Pattern Recognition of Brick Walls Based on the SSG-YOLOv8n Model[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(7): 152-161. doi: 10.3724/j.gyjzG25051205
Citation: CHEN Kui, ZHAO Yawei, WANG Guangming, LIANG Jianguo. A Method for Crack Pattern Recognition of Brick Walls Based on the SSG-YOLOv8n Model[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(7): 152-161. doi: 10.3724/j.gyjzG25051205

基于SSG-YOLOv8n模型的砖砌墙体裂缝形态识别方法

doi: 10.3724/j.gyjzG25051205
基金项目: 

长沙理工大学土木工程优势特色重点学科创新性项目(16ZDXK07)。

详细信息
    作者简介:

    陈逵,博士,硕士生导师,主要从事工程检测与加固改造。

    通讯作者:

    赵亚伟,2356096317@qq.com。

A Method for Crack Pattern Recognition of Brick Walls Based on the SSG-YOLOv8n Model

  • 摘要: 砖砌墙体裂缝的形成与发展是一个渐进过程,管理单位若在日常排查中忽视其动态变化,极易对人民生命财产安全构成威胁。针对传统人工检测方法存在的高风险、低效率、高成本等问题,提出一种改进的SSG-YOLOv8n模型。该模型在YOLOv8n基础架构上,通过引入SPD Conv卷积模块、增设小目标检测头并嵌入SAFM注意力机制模块,有效提升砖砌墙体裂缝形态的识别检测精度。试验数据显示,改进模型的mAP@50指标较原始YOLOv8n模型提升4.3%。为平衡检测精度提升与模型复杂度控制,进一步集成GhostNet轻量化模块,在保持精度优势的同时,显著降低浮点运算量、参数量及模型尺寸。试验结果表明:改进后的模型兼具检测精度与计算效率优势。
  • [1] 国家统计局. 中国统计年鉴[M]. 北京:中国统计出版社,2024.
    [2] SINGH S B,MUNJAL P. Bond strength and compressive stress-strain characteristics of brick masonry[J]. Journal of Building Engineering,2017,9:10-16.
    [3] CAO X L,WEI X L,HUO X Q,et al. Self-powered retractable reel sensor for crack monitoring and warning in civil infrastructures[J]. Chemical Engineering Journal,2023,478,147238.
    [4] CHEN W,CHEN C Y,LIU M,et al. Wall cracks detection in aerial images using improved mask R-CNN[J]. Computers,Materials& Continua,2022,73(1). DOI: 10.32604/cmc.2022.028571
    [5] XIONG,C Q,ZAYED T,ABDELKADER E M. A novel YOLOv8-GAM-Wise-IoU model for automated detection of bridge surface cracks[J]. Construction and Building Materials,2024,414,135025.
    [6] THOHARI A N A,KARIMA A,SANTOSO K,et al. Crack detection in building through deep learning feature extraction and machine learning approch[J]. Journal of Applied Informatics and Computing,2024,8(1):1-6.
    [7] CHEN Y L,ZHU Z L,LIN Z J,et al. Building surface crack detection using deep learning technology[J]. Buildings,2023,13(7),1814.
    [8] ZHU W,ZHANG H,EASTWOOD J,et al. Concrete crack detection using lightweight attention feature fusion single shot multibox detector[J]. Knowledge-Based Systems,2023,261,110216.
    [9] LAN M L,YANG D,ZHOU S X,et al. Crack detection based on attention mechanism with YOLOv5[J]. Engineering Reports,2025,7(1),e12899.
    [10] YAO J L,XU S,HUANG F J,et al. Improved lightweight infrared road target detection method based on YOLOv8[J]. Infrared Physics& Technology,2024,141,105497.
    [11] LIU Y F,GAO W L,ZHAO T T,et al. A rapid bridge crack detection method based on deep learning[J]. Applied Sciences,2023,13(17),9878.
    [12] LI Q J,ZHANG G Y,YANG P. CL-YOLOv8:crack detection algorithm for fair-faced walls based on deep learning[J]. Applied Sciences,2024,14(20),9421.
    [13] 凌同华,贝政豪,张胜,等. 基于YOLO-Pipe和ByteTrack的排水管道缺陷检测[J]. 中国给水排水,2025,41(3):125-130.
    [14] 张汉钰. 基于深度学习的砌体结构房屋裂缝识别及安全评价研究[D]. 南京:南京理工大学,2020.
    [15] ZHANG S,BEI Z H,LING T H,et al. Research on high-precision recognition model for multi-scene asphalt pavement distresses based on deep learning[J]. Scientific Reports,2024,14(1),25416.
    [16] SUNKARA R,LUO T. No more strided convolutions or pooling:a new CNN building block for low-resolution images and small objects[C]// Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham:Springer Nature Switzerland,2022:443-459.
    [17] LI Y,XIN X Y. Crack detection method based on an improved YOLOv8 model[C]// 2024 IEEE 7th International Conference on Automation,Electronics and Electrical Engineering(AUTEEE). IEEE,2024:226-231.
    [18] SUN L,DONG J X,TANG J H,et al. Spatially-adaptive feature modulation for efficient image super-resolution[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023:13190-13199.
    [19] HAN K,WANG Y H,TIAN Q,et al. Ghostnet:More features from cheap operations[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:1580-1589.
  • 加载中
计量
  • 文章访问数:  60
  • HTML全文浏览量:  11
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-12
  • 网络出版日期:  2025-09-12

目录

    /

    返回文章
    返回