Application of Prestressed Anchor Cable Foundations in Structural Retrofitting of Wind Turbine Towers
-
摘要: 使风电行业符合低碳发展的策略需求,对全球绿色经济转型有重要作用。为适应新一代风电机组的大功率、提升风电机组发电效率、延长风电机组使用寿命,需要对风电塔结构包括基础进行改造增强。结合实际工程项目,采用岩石锚索对风电塔基础进行相应的扩容改造处理。通过ANSYS有限元软件,建立了三维分析模型,对施加预应力、正常运行和极端荷载下预应力锚索基础中混凝土基础的主应力与变形、锚栓与锚索的应力以及钢锚板的应力等进行了分析计算。结果表明:预应力锚索基础在极端荷载下基础中心竖向变形和整体转角满足规范要求,证明了预应力锚索基础在风电塔结构改造中应用的可行性。Abstract: The wind power industry aligns with the strategic needs of low-carbon development and serves as a significant driving force for the global green economic transformation. To adapt to the higher capacity of new-generation wind turbines, improve power generation efficiency, and prolong service life, it is essential to retrofit the foundation of wind turbines. The structural foundation of a wind turbine was upgraded by incorporating rock anchor cables in an actual project. This study employed ANSYS software to establish a three-dimensional model for analyzing and calculating the principal stress and deformation of the concrete foundation, as well as the stresses in anchor bolts and anchor cables, and steel anchor plates of the prestressed anchor cable foundation. The analysis was conducted under three conditions: prestressing, normal operation, and extreme loading. The results indicated that the vertical deformation at the center and the overall rotational angle of the prestressed anchor cable foundation under extreme loading complied with the relevant code requirements. This finding demonstrated the feasibility of applying prestressed anchor cable foundations in the structural retrofitting of wind turbine foundations.
-
[1] 刘振亚. 中国电力与能源[M]. 北京:中国电力出版社,2012. [2] 许喆,谭旭辉,陈雷,等. 风电机组全风速段多目标发电优化控制[J]. 电力建设,2024,44(7):131-141. [3] 周莹. 碳中和背景下的绿色建筑设计理念的运用分析[J]. 中华建设,2024(11):88-90. [4] 李征,黄宜,黄冬平,等. 预制装配梁板式风力机基础整体性分析[J]. 太阳能学报,2023,44(10):427-436. [5] 何桂荣. 钢风电塔结构关键技术研究进展[J]. 特种结构,2023,40(1):15-21. [6] 杨福. 风电塔机应用技术研究[J]. 重庆电力高等专科学校学报,2023,28(5):14-17. [7] 国家能源局. 风电场改造升级和退役管理办法[R/OL] .(2023-06-05)[ 2025-02-21]. https://www.gov.cn/gongbao/2023/issue_10626/202308/content_6897055.html. [8] 吴泽. 小容量换装大容量风电机组的基础升级改造分析[J]. 上海节能,2024(3):506-510. [9] 刘照球,盛敏,成孝栋,等. 沿海滩涂风电塔基础环结构加固方法研究[J]. 江苏建筑,2021(1):66-69. [10] 韩宇栋,谢月,岳清瑞,等. 水泥基灌浆材料应用研究评述[J]. 工业建筑,2024,54(1):31-45. [11] 崔涛. 某海上风电测风塔基础方案选择[J]. 能源与环境,2022(6):63-66. [12] 孙凯华. 采动对输电线塔安全影响分析及加固改造设计[J]. 煤矿开采,2017,22(5):64-67. [13] 罗宇骁,马人乐,裘科一. 构架式预应力抗疲劳钢管风电塔抗疲劳设计方法[J]. 建筑钢结构进展,2021,23(5):73-81. [14] 韦洁,彭莎,韦妮采. 超高风电塔筒竖向体外预应力施工难题及解决方案研究[J]. 企业科技与发展,2024(1):102-105. [15] 冯城,杨子义. 解析风力发电机组预应力锚栓基础施工技术[J]. 工程建设,2020,3(10):107-108. [16] 中华人民共和国住房和城乡建设部. 混凝土结构设计标准:GB/T 50010—2010[S]. 北京:中国建筑工业出版社,2024. [17] 中华人民共和国住房和城乡建设部. 钢结构设计标准:GB 50017—2017[S]. 北京:中国建筑工业出版社,2018. [18] 中国国家标准化管理委员会. 预应力混凝土用钢绞线:GB/T 5224—2023[S]. 北京:中国标准出版社,2024. [19] 中国国家标准化管理委员会. 预应力筋用锚具、夹具和连接器:GB/T 14370—2015[S]. 北京:中国标准出版社,2015. [20] 国家能源局. 陆上风电场工程风电机组基础设计规范:NB/T 10311—2019[S]. 北京:中国水利水电出版社,2020. -
点击查看大图
计量
- 文章访问数: 12
- HTML全文浏览量: 2
- PDF下载量: 0
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: