Experimental Research on Eccentric Compression Performance of Hollow Steel Pipe-Concrete Composite Segments
-
摘要: 钢筋混凝土结构管片是隧道和地铁车站重要支护构件,其受力性能决定了隧道和地铁车站的工程质量,目前传统钢筋混凝土管片设计时尺寸较大、混凝土用量大且运输不便,为此将空心钢管设置在传统钢筋混凝土管片中,创新地提出空心钢管混凝土组合结构管片形式。对3个足尺管片试件进行偏心受压性能试验研究,深入分析组合结构管片在偏压荷载作用下的破坏形态、失效机理、承载性能及裂缝发展情况。在此基础上,推导和建立了偏压荷载下组合结构管片的承载能力计算方法。结果表明:组合结构管片中空心钢管和混凝土的黏结性能良好,二者能协同工作,组合结构管片具有良好的承载能力和刚度,试件ZHGP-2在屈服和峰值时对应的侧向挠度最小,侧向挠度相较于试件ZHGP-1、ZHGP-3减小36%、24%;试件ZHGP-2在屈服和峰值时对应的荷载达到最大,峰值荷载相较于试件ZHGP-1、ZHGP-3增大6%、15%,说明预应力试件ZHGP-2可显著提高其抗开裂能力、承载能力及刚度。最后,建立了适用于组合结构管片的正截面偏心受压极限承载力公式,试验值与理论计算值吻合较好,在地铁车站管片应用中具有显著性能优势和广泛应用前景。Abstract: The reinforced concrete segment is an important supporting component in tunnels and subway stations, and its mechanical properties determine the engineering quality of these structures. Currently, traditional reinforced concrete segments are designed with large dimensions, requiring substantial amounts of concrete and posing transportation challenges. To address these issues, this paper proposes embedding hollow steel pipes within traditional reinforced concrete segments, innovatively introducing a composite structural segment combining hollow steel pipes and concrete. This study conducted eccentric compression performance tests on three full-scale segment specimens and thoroughly analyzed their failure modes, failure mechanisms, bearing capacity, and crack development under eccentric loading. Based on experimental research, a calculation method for the bearing capacity of composite structural segments under eccentric loading was derived and established. The research results showed that the bonding performance between hollow steel pipes and concrete in composite structural segments was good, and the two materials could work together effectively. The composite structural segments exhibited good bearing capacity and stiffness. The lateral deflection of specimen ZHGP-2 was the smallest at both yield and peak stages, showing a 36% reduction compared to specimen ZHGP-1 and a 24% reduction compared to specimen ZHGP-3; the load of specimen ZHGP-2 reached its maximum at both yield and peak stages, with the peak load increasing by 6% compared to ZHGP-1 and by 15% compared to ZHGP-3. This indicated that the prestressed specimen ZHGP-2 significantly improved its crack resistance, bearing capacity, and stiffness. Finally, a formula for calculating the ultimate bearing capacity of eccentrically compressed sections in composite structural segments was established. The experimental results agreed well with theoretical calculations, demonstrating significant performance advantages and broad application prospects in subway station segment design.
-
[1] 《中国公路学报》编辑部.中国隧道工程学术研究综述·2015[J].中国公路学报,2015,28(5):1-65. [2] 张顶立.隧道及地下工程的基本问题及其研究进展[J].力学学报,2017,49(1):3-21. [3] 郭宇韬,聂建国,周萌.组合梁板结构在地下车库顶盖中的应用[J].建筑结构,2018,48(19):1-6. [4] 陈志华,杜颜胜,吴辽,等.矩形钢管混凝土结构研究综述[J].建筑结构,2015,45(16):40-46,76. [5] 聂建国,陶慕轩,黄远,等.钢-混凝土组合结构体系研究新进展[J].建筑结构学报,2010,31(6):71-80. [6] 曹万林,杨兆源,周绪红,等.装配式轻钢组合结构研究现状与发展[J].建筑钢结构进展,2021,23(12):1-15. [7] 刘川昆,何川,王士民,等.裂缝长度对盾构隧道管片结构破坏模式模型试验研究[J].中南大学学报(自然科学版),2019,50(6):1447-1456. [8] 陆显.基于XFEM的盾构管片结构开裂与承载性能研究[D].济南:济南大学,2021. [9] 何川,刘川昆,王士民,等.裂缝数量对盾构隧道管片结构力学性能的影响[J].中国公路学报,2018,31(10):210-219. [10] 周济民.水下盾构法隧道双层衬砌结构力学特性[D].成都:西南交通大学,2012. [11] 唐孟雄,陈如桂,陈伟.广州地铁盾构隧道施工中管片受力监测与分析[J].土木工程学报,2009,42(3):118-124. [12] 朱明勇,耿欧,孙倩,等.内粘钢板法加固盾构隧道衬砌管片的力学性能试验研究[J].特种结构,2022,39(2):9-14. [13] 孙巍,官林星,温竹茵.大断面矩形盾构法隧道的受力分析与工程应用[J].隧道建设,2015,35(10):1028-1033. [14] 张稳军,金明明,苏忍,等.盾构隧道钢混复合管片的力学性能试验(英文)[J].中国公路学报,2016,29(5):84-94. [15] 任天宇.钢板-混凝土组合管片的受力性能与设计方法[D].上海:同济大学,2018. [16] 金明明.盾构隧道复合管片的等效力学模型及应用研究[D].天津:天津大学,2016. [17] LIU D,GUO Y,YAO X. Interfacial behaviour of shield tunnel segment strengthened by thin plate at inner surface[J]. Advances in Materials Science and Engineering,2022(1):7715844. [18] LEE G,PARK Y,CHOI S,et al. An experimental study on mechanical behavior of shield segment with high-strength concrete and high-tension rebar[J]. Journal of Korean Tunnelling and Underground Space Association,2012,14(3):215-230. [19] MENG G,GAO B,ZHOU J,et al. Experimental investigation of the mechanical behavior of the steel fiber reinforced concrete tunnel segment[J]. Construction and Building Materials,2016,126:98-107. [20] 中华人民共和国住房和城乡建设部.混凝土结构试验方法标准:GB/T 50152-2012[S].北京:中国建筑工业出版社,2012. [21] 过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003. -
点击查看大图
计量
- 文章访问数: 39
- HTML全文浏览量: 10
- PDF下载量: 0
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: