中国科技核心期刊
中国建筑科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器视觉的钢结构工程运维关键技术研究现状

陈飞圻 薛江 逯鹏 王剑 丁代伟

陈飞圻, 薛江, 逯鹏, 王剑, 丁代伟. 基于机器视觉的钢结构工程运维关键技术研究现状[J]. 工业建筑, 2025, 55(7): 131-142. doi: 10.3724/j.gyjzG25031702
引用本文: 陈飞圻, 薛江, 逯鹏, 王剑, 丁代伟. 基于机器视觉的钢结构工程运维关键技术研究现状[J]. 工业建筑, 2025, 55(7): 131-142. doi: 10.3724/j.gyjzG25031702
CHEN Feiqi, XUE Jiang, LU Peng, WANG Jian, DING Daiwei. Advances in Key Technologies for Steel Structure Operation and Maintenance Based on Machine Vision[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(7): 131-142. doi: 10.3724/j.gyjzG25031702
Citation: CHEN Feiqi, XUE Jiang, LU Peng, WANG Jian, DING Daiwei. Advances in Key Technologies for Steel Structure Operation and Maintenance Based on Machine Vision[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(7): 131-142. doi: 10.3724/j.gyjzG25031702

基于机器视觉的钢结构工程运维关键技术研究现状

doi: 10.3724/j.gyjzG25031702
详细信息
    作者简介:

    陈飞圻,硕士研究生,主要从事钢结构损伤智能化检测与评价方面的研究。

    通讯作者:

    逯鹏,博士,正高级工程师,lupeng201501@126.com

    王剑,博士,副教授,avonlea@163.com

Advances in Key Technologies for Steel Structure Operation and Maintenance Based on Machine Vision

  • 摘要: 系统梳理了机器视觉在螺栓松动与缺失检测、焊缝缺陷识别、局部变形监测与锈蚀位置及程度评估等方面的研究进展。针对传统方法依赖手工特征、环境适应性差的问题,深度学习与三维重建技术实现了特征自动提取、多尺度检测与空间形态量化,显著提升了检测的准确性与智能化水平。为应对复杂背景干扰和小目标漏检,研究中引入了注意力机制、特征金字塔、多模态数据融合与半监督迁移学习等方法,优化了模型性能与泛化能力。然而,现有技术仍面临数据集多样性不足、算法鲁棒性和实时部署能力受限等挑战。未来发展方向包括:强化多模态协同感知与三维重构融合、构建持续学习与自适应模型、实现云端实时分析与边缘轻量化部署,并推进智能检测与数字孪生体系的深度结合,推动钢结构运维检测向全自动化、智能化、系统化转型。
  • [1] 周红波,高文杰,黄誉. 钢结构事故案例统计分析[J]. 钢结构,2008,23(6):28-31.
    [2] CHA Y J,YOU K,CHOI W. Vision-based detection of loosened bolts using the Hough transform and support vector machines[J]. Automation in Construction,2016,71:181-188.
    [3] NGUYEN T C,HUYNH T C,RYU J Y,et al. Bolt-loosening identification of bolt connections by vision image-based technique[C]// Nondestructive Characterization and Monitoring of Advanced Materials,Aerospace,and Civil Infrastructure 2016. Bellingham:SPIE,2016:227-243.
    [4] ZHAO X,ZHANG Y,WANG N. Bolt loosening angle detection technology using deep learning[J]. Structural Control and Health Monitoring,2019,26(1),e2292.
    [5] LAO W,CUI C,ZHANG D,et al. Computer vision‐based autonomous method for quantitative detection of loose bolts in bolted connections of steel structures[J]. Structural Control and Health Monitoring,2023,30(1),8817058.
    [6] 周明涛,张永敬. 基于3D点云和深度学习的动车组螺栓松动智能检测研究[J]. 智慧轨道交通,2022,59(6

    ):62-66.
    [7] 赵欣欣,钱胜胜,刘晓光. 基于卷积神经网络的铁路桥梁高强螺栓缺失图像识别方法[J]. 中国铁道科学,2018,39(4):56-62.
    [8] 卓德兵. 基于计算机听觉与视觉技术的钢桁架螺栓连接损伤检测研究[D]. 重庆:重庆大学,2021.
    [9] 张洪,朱志伟,胡天宇,等. 基于改进YOLOv5s的桥梁螺栓缺陷识别方法[J]. 吉林大学学报(工学版),2024,54(3):749-760.
    [10] LUO P,WANG B,WANG H,et al. An ultrasmall bolt defect detection method for transmission line inspection[J]. IEEE Transactions on Instrumentation and Measurement,2023,72:1-12.
    [11] 崔闯,罗纯坤,邱师津,等. 基于数据深度增强的钢桥螺栓脱落智能检测方法研究[J]. 桥梁建设,2024,54(2):39-47.
    [12] 王域辰,冯海龙,刘伯奇. 基于YOLO算法的高速铁路客运车站钢结构雨棚螺栓缺失检测系统[J]. 铁道学报,2023,45(12):1-10.
    [13] LIU B,ZHANG X,GAO Z,et al. Weld defect images classification with vgg16-based neural network[C]// International Forum on Digital TV and Wireless Multimedia Communications. Singapore:Springer Singapore,2017:215-223.
    [14] MA G,YU L,YUAN H,et al. A vision-based method for lap weld defects monitoring of galvanized steel sheets using convolutional neural network[J]. Journal of Manufacturing Processes,2021,64:130-139.
    [15] CHEN Y,WANG J,WANG G. Intelligent welding defect detection model on improved r-cnn[J]. IETE Journal of Research,2023,69(12):9235-9244.
    [16] JI C,WANG H,LI H. Defects detection in weld joints based on visual attention and deep learning[J]. NDT& E International,2023,133,102764.
    [17] WANG J,MU C,MU S,et al. Welding seam detection and location:deep learning network-based approach[J]. International Journal of Pressure Vessels and Piping,2023,202,104893.
    [18] JI W,LUO Z,LUO K,et al. Computer vision-based surface defect identification method for weld images[J]. Materials Letters,2024,325,136972.
    [19] KUMAR D D,FANG C,ZHENG Y,et al. Semi-supervised transfer learning-based automatic weld defect detection and visual inspection[J]. Engineering Structures,2023,292,116580.
    [20] GUO W,LIU K,QU H. Welding defect detection of X-ray images based on Faster R-CNN model[J]. Journal of Beijing University of Posts and Telecommunications,2019,42(6):20-29.
    [21] ROCA B F,DHIERRO P J,RIBES L F,et al. Development of an ultrasonic weld inspection system based on image processing and neural networks[J]. Nondestructive Testing and Evaluation,2017,32(7):678-692.
    [22] BUONGIORNO D,PRUNELLA M,GROSSI S,et al. Inline defective laser weld identification by processing thermal image sequences with machine and deep learning techniques[J]. Applied Sciences,2022,12(12),6455.
    [23] HAN Y,FAN J,YANG X. A structured light vision sensor for on-line weld bead measurement and weld quality inspection[J]. International Journal of Advanced Manufacturing Technology,2019,102(9):2055-2065.
    [24] 赵亚波,王智. 基于三维激光点云的钢结构变形分析[J]. 测绘通报,2021,(5):155-158.
    [25] LIU Y F,LIU X G,FAN J S,et al. Refined safety assessment of steel grid structures with crooked tubular members[J]. Automation in Construction,2019,99:249-264.
    [26] 诸宏博,谢忠,傅林峰. 三维激光扫描技术在钢结构检测技术中的应用研究[J]. 建筑结构,2023,53(增刊2):1739-1743.
    [27] WEI X C,FAN J S,LIU Y F,et al. Automated inspection and monitoring of member deformation in grid structures[J]. Computer-Aided Civil and Infrastructure Engineering,2022,37(10):1277-1297.
    [28] XU M N,SUN L M,LIU Y F,et al. Member separation and deformation recognition of spatial grid structures in-service[J]. Engineering Structures,2024,304,117642.
    [29] WANG J T,LIU Y F,LIU X G,et al. Photogrammetry-based bending monitoring and load identification of steel truss structures[J]. Advances in Structural Engineering,2023,26(13):2543-2561.
    [30] LYDON D,LYDON M,TAYLOR S,et al. Development and field testing of a vision-based displacement system using a low cost wireless action camera[J]. Mechanical Systems and Signal Processing,2019,121:343-358.
    [31] KROMANIS R,KRIPAKARAN P. A multiple camera position approach for accurate displacement measurement using computer vision[J]. Journal of Civil Structural Health Monitoring,2021,11(3):661-678.
    [32] HAGIWARA T,SHIMAMOTO Y,SUZUKI T. Non-contact detection of degradation of in-service steel sheet piles due to buckling phenomena by using digital image analysis with Hough transform[J]. Frontiers in Built Environment,2022,8,948232.
    [33] KHAYATAZAD M,DE P L,DE W W. Detection of corrosion on steel structures using automated image processing[J]. Developments in the Built Environment,2020,3,100022.
    [34] VOROBEL R,IVASENKO I,BEREHULYAK O,et al. Segmentation of rust defects on painted steel surfaces by intelligent image analysis[J]. Automation in Construction,2021,123,103515.
    [35] FONDEVIK S K,STAHL A,TRANSETH A A,et al. Image segmentation of corrosion damages in industrial inspections[C]// 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence(ICTAI). Los Alamitos:IEEE Computer Society,2020:787-792.
    [36] TIAN Z,ZHANG G,LIAO Y,et al. Corrosion identification of fittings based on computer vision[C]// 2019 International Conference on Artificial Intelligence and Advanced Manufacturing(AIAM). New York:IEEE,2019:592-597.
    [37] PAN F. Corrosion detection method of substation aboveground steel structure based on deep learning[C]// 2022 7th Asia Conference on Power and Electrical Engineering(ACPEE). New York:IEEE,2022:2234-2238.
    [38] HUANG I F,CHEN P H. Automated steel bridge coating rust defect recognition method based on U-net fully convolutional networks[C]// 2020 IEEE 2nd International Conference on Architecture,Construction,Environment and Hydraulics(ICACEH). New York:IEEE,2020:18-21.
    [39] CHEN Q,WEN X,LU S,et al. Corrosion detection for large steel structure base on uav integrated with image processing system[C]// IOP Conference Series:Materials Science and Engineering. Bristol:IOP Publishing,2019,608(1),012020.
    [40] HAN Q,ZHAO N,XU J. Recognition and location of steel structure surface corrosion based on unmanned aerial vehicle images[J]. Journal of Civil Structural Health Monitoring,2021,11(5):1375-1392.
    [41] NASH W,ZHENG L,BIRBILIS N. Deep learning corrosion detection with confidence[J]. NPG Materials Degradation,2022,6(1),26.
    [42] KATSAMENIS I,PROTOPAPADAKIS E,DOULAMIS A,et al. Pixel-level corrosion detection on metal constructions by fusion of deep learning semantic and contour segmentation[C]// International Symposium on Visual Computing. Cham:Springer International Publishing,2020:160-169.
    [43] KHAYATAZAD M,HONHON M D W W. Detection of corrosion on steel structures using an artificial neural network[J]. Structure and Infrastructure Engineering,2023,19(12):1860-1871.
    [44] DAS A,DORAFSHAN S,KAABOUCH N. Autonomous image-based corrosion detection in steel structures using deep learning[J]. Sensors,2024,24(11),3630.
    [45] HATHOUT I,CALLERY K,HATHOUT T,et al. Digital image expert system for corrosion analysis of steel transmission structures[C]// 2017 IEEE Power& Energy Society General Meeting. New York:IEEE,2017:1-5.
    [46] 逯鹏,赵天淞,王剑,等. 基于计算机视觉的钢结构表面锈蚀程度检测方法[J]. 工业建筑,2024,54(8):133-139.
    [47] WANG Y,SHEN X,WU K,et al. Corrosion grade recognition for weathering steel plate based on a convolutional neural network[J]. Measurement Science and Technology,2022,33(9),095014.
    [48] KATSAMENIS I,DOULAMIS N,DOULAMIS A,et al. Simultaneous precise localization and classification of metal rust defects for robotic-driven maintenance and prefabrication using residual attention U-Net[J]. Automation in Construction,2022,137,104182.
    [49] RAHMAN A,WU Z Y,KALFARISI R. Semantic deep learning integrated with RGB feature-based rule optimization for facility surface corrosion detection and evaluation[J]. Journal of Computing in Civil Engineering,2021,35(6),04021018.
    [50] ZHOU Q,DING S,FENG Y,et al. Corrosion inspection and evaluation of crane metal structure based on UAV vision[J]. Signal,Image and Video Processing,2022,16(6):1701-1709.
    [51] AMELI Z,NESHELI S J,LANDIS E N. Deep learning-based steel bridge corrosion segmentation and condition rating using Mask RCNN and YOLOv8[J]. Infrastructures,2023,9(1),3.
  • 加载中
计量
  • 文章访问数:  54
  • HTML全文浏览量:  10
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-17
  • 网络出版日期:  2025-09-12

目录

    /

    返回文章
    返回