Numerical Simulation of Low Temperature Fatigue Performance of Welded Joints of Q500QENH Weathering Steel
-
摘要: 耐候钢因其在复杂环境下的优良工作性能在高原建设中得到了广泛应用。为研究Q500qENH耐候钢焊接接头在低温下的疲劳性能,基于线弹性断裂力学方法,联合使用有限元软件ABAQUS和FRANC3D,对V形对接接头和十字形传力角焊缝接头进行了-40 ℃低温下疲劳裂纹扩展的有限元模拟,并与相关试验的结果进行对比,验证模型的有效性。在此基础上,对影响耐候钢焊接接头疲劳寿命的关键因素进行了参数分析。结果表明:初始裂纹尺寸和角度主要影响焊接接头的前期裂纹扩展形态和疲劳寿命,当初始裂纹长短半轴等长,且初始裂纹平面垂直于试件长度方向或角焊缝平面时,疲劳寿命最小;在十字形传力角焊缝接头的角焊缝表面长度方向,初始裂纹位置会对焊接接头的疲劳寿命产生极大影响。Abstract: Weathering steel is widely used in plateau construction because of its excellent working performance in complex environment. In order to study the low temperature fatigue performance of welded joints of Q500qENH weathering steel, based on the linear elastic fracture mechanics method and the interactive use of ABAQUS and FRANC3D software, the fatigue crack propagation of V-shaped butt joint and cross shaped transmission angle welded joints at -40 ℃ were simulated. And the model was verified by comparing with low temperature fatigue experimental results. On this basis, several key factors affecting the fatigue life were analyzed. The results showed that: the initial crack size and initial crack angle mainly affected the early crack propagation pattern and the final fatigue life of the welded joints. The fatigue life was minimum when the length of the major and minor axes of the initial elliptical crack was equal, and the initial crack plane was perpendicular to the length of the specimen. The initial crack location in the lengthwise direction of angle welding surface had great influence on the fatigue life of the cross shaped transmission angle welded joints, while had little influence on the V-shaped butt joint.
-
[1] 戴胜勇,陈克坚,张志勇,等. 铁路无涂装耐候钢桥梁关键技术及应用示范[J]. 铁道工程学报,2023,40(6):57-61. [2] 高建忠,徐向军,马立朋,等. 冬季严寒环境高性能耐候钢桥焊接施工技术[J]. 山西交通科技,2024(2):111-115. [3] 潘韦廷. 金属结构低温疲劳寿命评估方法研究及不确定性分析[D]. 大连:大连交通大学,2024. [4] LI Q,XU C,LUO Z,et al. Fatigue performance of Q420C steel fillet-welded joints at low temperatures[J]. Structures,2023,51:1341-1353. [5] 刘子杰. 极地船结构低温疲劳特性研究[D]. 哈尔滨:哈尔滨工程大学,2017. [6] 贾单锋. 桥梁钢Q345qD及其对接焊缝低温疲劳性能试验研究[D]. 重庆:重庆大学,2018. [7] 吴毅,尹鸿祥,孟扬,等. 高速列车车轴材料的低温高周疲劳性能[J]. 材料热处理学报,2019,40(4):54-61. [8] 冯国庆,刘文超,赵伟栋,等. DH36钢趾端焊接接头低温疲劳试验[J]. 船舶工程,2020,42(9):93-98. [9] 廖小伟,王元清,吴剑国,等. 低温环境下十字形非传力角焊缝接头的疲劳性能[J]. 浙江大学学报(工学版),2020,54(10):2018-2026. [10] 唐诗晴. 基于裂纹扩展分析的正交异性钢桥面板的疲劳性能劣化研究[D]. 成都:西南交通大学,2022. [11] PARIS P,ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering,Transactions of the ASME,1963,85:528-533. [12] 叶华文,叶杨帆,邓雪峰,等. 基于断裂力学的腐蚀钢丝疲劳S-N曲线研究[J/OL]. 铁道科学与工程学报,2024[ 2024-04-15]. https://doi-org-s.era.lib.swjtu.edu.cn:443/10.19713/j.cnki.43-1423/u.T20231132. [13] 王小鹏. 工业大气环境下Q500qENH耐候钢耐候性及腐蚀后低温疲劳性能研究[D]. 成都:西南交通大学,2024. [14] 刑广杰. 锈损耐候钢焊接接头力学性能试验研究[D]. 西安:西安建筑科技大学,2024. [15] 宗亮. 基于断裂力学的钢桥疲劳裂纹扩展与寿命评估方法研究[D]. 北京:清华大学,2015. [16] LI A,WANG L,XU S. Fatigue crack propagation prediction of corroded steel plate strengthened with carbon fiber reinforced polymer(CFRP)plates[J]. Polymers,2022,14(21),125707. [17] ARORA P,KUMAR S,SINGH P K,et al. Fatigue crack growth studies on narrow gap pipe welds of austenitic stainless steel material[C]// Proceedings of the Procedia Engineering,Inernational Conference on Structural Integrity,Kalpakkam,India,2014. [18] 李茂贝. 耐候钢桥面板焊接节点在多重耦合作用下的疲劳性能研究[D]. 西安:西安建筑科技大学,2024. [19] JAKUBOWSKI M. Corrosion fatigue crack propagation rate characteristics for weldable ship and offshore steels with regard to the influence of loading frequency and saltwater temperature[J]. Polish Maritime Research,2017,24(1):88-99. [20] VARGAS-ARISTA B,TERAN-GUILLEN J,SOLIS J,et al. Normalizing effect on fatigue crack propagation at the heat-affected zone of AISI 4140 steel shielded metal arc weldings[J]. Materials Research,2013,16(4):772-778. -
点击查看大图
计量
- 文章访问数: 27
- HTML全文浏览量: 4
- PDF下载量: 0
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: