Comparisons and Analysis of Plexiglass Ball Structure Schemes for the Jinping Neutrino Detector
-
摘要: 为得到适用于锦屏中微子探测器的有机玻璃球结构方案,首先提出了4种有机玻璃球及其绳索固定方案,对比了各方案的球体最大应力、绳索轴力和结构位移,并对最优方案开展了不同工况下的受力分析。结果表明:方案Ⅱ中有机玻璃球体应力最大,方案Ⅳ为最优结构方案;在正常工况下,方案Ⅳ有机玻璃球最大Mises应力为2.57 MPa,最大第一主应力为2.23 MPa,最大绳索轴力为121 kN,最大结构位移为182 mm;在最不利工况下,方案Ⅳ有机玻璃球最大Mises应力为3.81 MPa,最大第一主应力为4.54 MPa,最大绳索轴力为122 kN,最大结构位移184 mm,满足承载性能要求。Abstract: In order to obtain the plexiglass ball structural scheme suitable for the Jinping Neutrino Detector, four plexiglass balls and the corresponding supporting schemes were proposed. The maximum stresses on the balls, axial forces of ropes, and structural displacements of the proposed schemes were compared. The load-bearing analysis of the optimized scheme in various working conditions were performed. The results showed that the stress on the ball for Scheme Ⅱ was the largest, and Scheme Ⅳ was the best scheme. In normal working condition, the maximum Mises stress on the plexiglass ball of Scheme Ⅳ was 2.57 MPa, the maximum first principal stress was 2.23 MPa, the maximum axial force of the ropes was 121 kN, and the maximum structural displacement was 182 mm. In the worst working condition, the maximum Mises stress of Scheme Ⅳ was 3.81 MPa, the maximum first principal stress was 4.54 MPa, the maximum cable axial force was 122 kN, and the maximum structural displacement was 184 mm, which could meet the requirements for the bearing capacity.
-
[1] 黄臻成,沈韩,唐健. 中微子探测中的光学应用[J]. 物理与工程,2022,32(1):33- 36. [2] STEINBERGER J. The history of neutrinos,1930-1985. What have we learned about neutrinos? What have we learned using neutrinos?[J]. Nuclear Physics B- Proceedings Supplements,2013,235/236:485- 508. [3] JOO K K. Status of the RENO reactor neutrino experiment[J]. Nuclear Physics B- Proceedings Supplements,2012,229/230/231/232:97- 100. [4] FUKUDA S,FUKUDA Y,HAYAKAWA T,et al. The super-Kamiokande detector[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,2003,501(2/3):418- 462. [5] ABE S,ASAMI S,GANDO A,et al. Limits on astrophysical antineutrinos with the KamLAND experiment[J]. The Astrophisical Journal,2022,925(14):1- 11. [6] ALBANESE V,ALVES R,ANDERSON M R,et al. The SNO+ experiment[J]. Journal of Instrumentation,2021,16,P08059. [7] BIALEK A,CHEN M,CLEVELAND B,et al. A rope-net support system for the liquid scintillator detector for the SNO+ experiment[J]. Nuclear Instruments and Methods in Physics Research A,2016,827:152- 160. [8] LU H Q. The JUNO water Cherenkov detector system[J]. Nuclear Instruments and Methods in Physics Research A,2023,1056,168623. [9] 骆文泰. 基于锦屏中微子百吨探测器的兆电子伏中微子若干关键问题研究[D]. 北京:中国科学院大学,2023. [10] WANG Z Y,WANG Y Q,WANG Z,et al. Design and analysis of a 1-ton prototype of the Jinping neutrino experiment[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,2017,855:81- 87. [11] XU X J,WANG Z,CHEN S M. Solar neutrino physics[J]. Progress in Particle and Nuclear Physics,2023,131,104043. [12] LEONOR RB,JOSÉ M L A. Experimental determination of elemental compositions and densities of several common liquid scintillators[J]. Applied Radiation and Isotopes,2010,68(7/8):1546- 1549. [13] ZHENG B F,ZHANG S B,SHU G P,et al. Experimental investigation and modeling of the mechanical properties of construction PMMA at different temperatures[J]. Structures,2023,57,105091. [14] 王元清,王综轶,杜新喜,等. 超大型中微子探测器有机玻璃球与不锈钢网壳方案的设计优化分析[J]. 工程力学,2016,33(3):10- 17. [15] 王综轶,王元清,杜新喜,等. 不同温度下有机玻璃厚板的准静态拉伸试验研究[J]. 东南大学学报(自然科学版),2018,48(1):132- 137. [16] WANG Z Y,LIU Y H,CHEN S M,et al. Structural design of the acrylic vessel for the Jinping neutrino experiment[J]. Journal of Instrumentation,2024,19,P07041. -
点击查看大图
计量
- 文章访问数: 49
- HTML全文浏览量: 11
- PDF下载量: 1
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: