Research on Detection Methods and Applications for Missing Brackets in Hidden-Frame Glass Curtain Walls Based on UAV Visual Images
-
摘要: 横向隐框玻璃幕墙是一种常见的外围护结构形式,下边缘托条的缺失直接影响幕墙结构运维阶段的安全。以横向隐框玻璃幕墙托条为研究对象,提出一种托条缺失的无损检测方法,利用无人机负载可见光设备和红外热像仪对横向隐框玻璃幕墙托条进行数据采集,构建建筑三维模型,引入深度学习的目标检测算法YOLOv8对玻璃幕墙红外图像进行托条目标检测,将筛选出来的玻璃幕墙托条缺失结果形成数据集,实现缺陷在三维模型中可视化定位与随时调取,并可生成横向隐型玻璃幕墙托条缺失检测的应用报告,明确托条缺失位置、数量,形成一套从数据采集、数据处理到数据展示的完整巡检应用流程与可视化软件平台,用于了解幕墙结构健康状态,指导幕墙结构运维,延长其使用寿命。Abstract: The horizontal hidden-frame glass curtain wall is a common form of building envelope. The absence of lower-edge brackets directly affects the structural safety of the curtain wall during the operation and maintenance phase. This paper focuses on the brackets of the horizontal hidden-frame glass curtain wall and proposes a non-destructive detection method for missing brackets. Unmanned aerial vehicles (UAVs) equipped with visible-light sensors and infrared thermal imaging cameras are employed to collect data on these brackets, enabling the 3D modeling of building facades for analysis. The deep learning target detection algorithm YOLOv8 is used to detect the bracket targets in infrared thermograms of the glass curtain wall. A dataset is formed for the screened missing results of the glass curtain wall brackets, allowing defects to be visually positioned in the three-dimensional model and retrieved at any time. An application report for detecting missing brackets can be generated to document their locations and quantities, forming a complete inspection workflow—from data collection and processing to visualization—through a visualization software platform. This system helps assess the health status of the curtain wall structure, supports its operation and maintenance, and extends its service life.
-
[1] 张其林. 玻璃幕墙结构设计[M]. 上海:同济大学出版社,2007. [2] 中华人民共和囯建设部. 玻璃幕墙工程技术规范:JGJ 102—2003[S]. 北京:中国建筑工业出版社,2003. [3] 中华人民共和国住房和城乡建设部. 玻璃幕墙工程质量检验标准:JGJ/T 139—2020[S]. 北京:中国建筑工业出版社,2020. [4] 陈宁,王娟,董庆广. 无人机搭载红外热像仪检测外墙外保温系统缺陷影响因素及案例分析[J]. 施工技术,2020,49(9):12-15. [5] TANAKA H,TOTTORI S,NIHEI T. Detection of concrete spalling using active infrared thermography[J]. Quarterly Report of RTRI,2006,47(3):138-144. [6] CHUN P J,HAYASHI S. Development of a concrete floating and delamination detection system using infrared thermography[J]. IEEE/ASME Transactions on Mechatronics,2021,26(6):2835-2844. [7] JANKŮ M,BŘEZINA I,GROŠEK J. Use of infrared thermography to detect defects on concrete bridges[J]. Procedia Engineering,2017,190:62-69. [8] 王建勇. 红外热成像技术在玻璃幕墙建筑检查中的应用[J]. 上海建材,2023(4):13-16. [9] 夏子祺,马临原,单伽锃,等. 基于计算机视觉的建筑外墙剥落和裂缝两阶段检测方法[J]. 建筑结构学报,2023,44(2):207-216. [10] 李国华,吴立新,吴淼,等. 红外热像技术及其应用的研究进展[J]. 红外与激光工程,2020,33(3):27-230. [11] 全国轻质与装饰装修建筑材料标准化技术委员会. 建筑用硅酮结构密封胶:GB 16776—2005[S]. 北京:中国标准出版社,2005. [12] 米增,连哲. 面向通用目标检测的YOLO方法研究综述[J]. 计算机工程与应用,2024,60(21):1-19. -
点击查看大图
计量
- 文章访问数: 45
- HTML全文浏览量: 8
- PDF下载量: 3
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: