Experimental Research on the Seismic Performance of Bamboo Scrimber Beam-Column Joints
-
摘要: 为研究榫卯连接和钢填板螺栓连接两类典型重组竹框架梁柱节点的抗震性能,设计制作了2个节点试件并开展了水平低周往复加载试验,对比分析了两类节点的破坏模式、弯矩-转角曲线、承载能力、强度和刚度退化以及耗能能力等。结果表明:榫卯连接节点的破坏主要由拔榫造成,而钢填板螺栓连接节点的破坏主要由梁端拔出、柱上节点域形成贯通横裂缝及其上螺栓形成弯曲塑性铰造成;两类节点的滞回曲线均呈反"Z"形,但榫卯连接节点的滑移段更短、"捏缩"效应更轻微;钢填板螺栓连接节点承载能力更优越、强度退化更轻微;加载初期,榫卯连接节点刚度高而耗能能力低,但加载中后期,钢填板螺栓连接节点刚度高而耗能能力低。两类节点各具优点,可考虑优势互补,提出整体性能更优的新型重组竹框架梁柱节点。Abstract: In order to investigate the seismic performance of two typical types of bamboo scrimber beam-column joints, namely the mortise-tenon joint and the bolted bamboo scrimber (BS)-steel-bamboo scrimber (BS) joint, two joint specimens were designed, fabricated and conducted on the quasi-static loading. The failure mode, moment-rotation curves, bearing capacity, strength and stiffness degradation, and energy dissipation capacity of the two types of joints were compared and analyzed. The results indicated that the failure of the mortise-tenon joint was mainly caused by the extraction of tenon, while the failure of the bolted BS-steel-BS joint was mainly caused by the extraction of beam end, the formation of through transverse cracks in the panel zone on the column, and the formation of bending plastic hinge by bolts. The hysteretic curves of both types of joints showed an inverse "Z" shape, but the slip of the mortise-tenon joint was shorter and the "pinching" effect was milder. The bolted BS-steel-BS joint had superior bearing capacity and less strength degradation. At the beginning of loading, the mortise-tenon joint showed higher stiffness but lower energy dissipation capacity. However, in the middle later stages of loading, the bolted BS-steel-BS joint had higher stiffness but lower energy dissipation capacity. The two types of joints have their own advantages, and a new type of bamboo scrimber beam-column joint with better overall performance can be proposed by comprehensively considering the advantages of both types of joints.
-
[1] 李霞镇, 任海青, 李贤军, 等. 重组竹螺栓连接节点承载能力计算分析[J]. 土木与环境工程学报(中英文), 2022, 44(4): 78-86. [2] 王飞. 重组竹结构钢夹板螺栓节点抗火性能试验研究[D]. 南京: 东南大学, 2016. [3] 崔兆彦, 徐明, 陈忠范, 等. 重组竹钢夹板螺栓连接承载力试验研究[J]. 工程力学, 2019, 36(1): 96-103,118. [4] 崔兆彦, 惠勃涛, 徐明, 等. 重组竹钢夹板螺栓连接抗火性能试验研究[J]. 建筑结构学报, 2019, 40(9): 20-27. [5] 中华人民共和国住房和城乡建设部.木结构设计规范:GB 50005—2003[S]. 北京: 中国建筑工业出版社, 2003. [6] 《木结构设计手册》编委会. 木结构设计手册[M]. 北京: 中国建筑工业出版社, 2005. [7] British Standards Institution. Eurocode 5: Design of timber structures: part 1-1: General-Common rules and rules for buildings: BS EN 1995-1-1 [S]. London: British Standards Institution, 2016. [8] ZHANG M, HUANG Y, FAN H, et al. A method to calculate the load-carrying capacity of bolted steel-bamboo scrimber-steel connections[J]. Journal of Building Engineering, 2023, 72,106743. [9] ZHANG M, FAN H, LI W, et al. Study on the elastic stiffness calculation method of single-bolted steel-bamboo scrimber-steel shear connections[J]. Engineering Structures, 2024, 301, 117331. [10] 周爱萍, 黄东升, 唐思远, 等. 重组竹-钢填板螺栓节点承载力试验研究[J]. 南京工业大学学报(自然科学版), 2016, 38(5): 34-39,67. [11] 周军文, 赵风华, 齐永胜, 等. 新型竹木框架装配节点抗震性能试验研究[J]. 工业建筑, 2017, 47(9): 70-74,105. [12] 周军文, 黄东升, 黄子睿, 等. 竹框架装配式梁柱节点单调加载试验[J]. 林业工程学报, 2018, 3(3): 122-127. [13] 李诫. 营造法式[M]. 北京: 商务印书馆, 2010. [14] 中华人民共和国住房和城乡建设部.木结构设计标准:GB 50005—2017[S]. 北京: 中国建筑工业出版社, 2017. [15] 全国竹藤标准化技术委员会.结构用重组竹:LY/T 3194—2020 [S]. 北京: 中国标准出版社, 2020. [16] 全国木材标准化技术委员会.无疵小试样木材物理力学性质试验方法;GB/T 1927.15—2022[S]. 北京: 中国标准出版社, 2022. [17] International Organization for Standardization. Timber structures: Joints made with mechanical fasteners: quasi-static reversed-cyclic test method:ISO-16670[S]. Geneva: International Organization for Standardization, 2003. [18] 冯鹏, 强翰霖, 叶列平. 材料、构件、结构的"屈服点"定义与讨论[J]. 工程力学, 2017, 34(3): 36-46. -

计量
- 文章访问数: 45
- HTML全文浏览量: 7
- PDF下载量: 2
- 被引次数: 0