Research on the Failure Mechanism and Bearing Capacity Calculation of Lightweight Steel-Concrete Composite Cover Slabs
-
摘要: 为有效解决传统混凝土电力盖板质量较大的问题,提出一种新型轻质组合电力盖板。共设计4种组合盖板,开展竖向承载破坏试验,得到了盖板破坏模式、极限承载力以及应变变化规律等。结果表明:与传统的钢纤维混凝土盖板相比,新型组合盖板的质量减轻了70%以上。极限承载力分别为135、143.59、260.31、550.65 kN,满足GB/T 26537—2011《钢纤维混凝土检查井盖》的要求;同时,表现出较好的变形能力。该组合盖板破坏模式为:距端部1/4板长区域混凝土受压开裂,钢板屈曲。混凝土与钢结构未发生滑移,整体性较好,为保证两者较好地协同工作,建议混凝土厚度占盖板高度的25%。最后,根据试验结果,基于平衡理论,给出极限承载力计算方法。Abstract: To effectively address the issue of excessive weight in traditional concrete power cover slabs, this paper proposes a new type of lightweight composite power cover slab. Four types of composite cover slabs were designed and subjected to vertical load-bearing failure tests. The failure modes, ultimate bearing capacity, and strain variation patterns of the slabs were obtained. The results showed that, compared with traditional steel fiber-reinforced concrete cover slabs, the weight of the new composite cover slabs was reduced by over 70%. The ultimate bearing capacities were 135 kN, 143.59 kN, 260.31 kN, and 550.65 kN, respectively, all meeting the requirements of Steel Fiber Reinforced Concrete Manhole Cover(GB/T 26537-2011). Additionally, the composite slabs exhibited good deformability. The failure mode of the composite cover slabs was characterized by concrete compression-induced cracking and slab buckling in the area 1/4 of the slab length from the end. No slippage occurred between the concrete and the steel structure, indicating good overall integrity. To ensure effective collaboration between the two materials, it is recommended that the concrete thickness should not exceed 25% of the slab height. Finally, based on the experimental results and equilibrium theory, a method for calculating the ultimate bearing capacity was proposed.
-
Key words:
- composite cover slab /
- ultimate bearing capacity /
- failure mode /
- strain analysis
-
[1] 曹露春,张志军. 钢渣混凝土窨井盖压敏性研究[J]. 建筑材料学报,2012,15(4):557-561. [2] 杨益伦,吴庆雄,陈智威,等. 无配筋机制砂UHPC井盖受力性能试验研究[J]. 宁夏大学学报(自然科学版),2023,44(4):328-338. [3] 苏家战,张惠彬,黄卿维,等. 配筋超高性能混凝土井盖试验及现场使用性能测试[J]. 福州大学学报(自然科学版),2018,46(6):867-873. [4] 陈闹清,梁伟. 按弹塑性本构关系的球墨铸铁井盖强度分析与设计[J]. 铸造技术,2010,31(3):288-291. [5] 周敏,肖靖林,杨腾宇,等. 带开孔板剪力键的钢-UHPC组合板受弯性能试验研究及数值模拟[J]. 工程力学,2022,39(7):19-29. [6] 赵唯以,高泽鹏,王琳,等. 集中荷载作用下四边简支双钢板混凝土组合板的力学性能研究[J]. 工程力学,2022,39(3):158-170. [7] 王庆贺,董国明,谷凡,等. 非均匀收缩变形对两跨连续钢-混凝土组合板长期性能的影响研究[J]. 建筑结构学报,2020,41(增刊1):179-187. [8] COSTA R S,LAVALL A C C,SILVA R G L,et al. Experimental study of the influence of friction at the supports on longitudinal shear resistance of composite slabs[J]. Revista IBRACON de Estruturas e Materiais,2017,10:1075-1086. [9] AHMED S M,AVUDAIAPPAN S,SHEET I S,et al. Prediction of longitudinal shear resistance of steel-concrete composite slabs[J]. Engineering Structures,2019,193:295-300. [10] 王庆贺,梁永泽,张欢,等. 考虑荷载分布的多跨连续钢-再生混凝土组合板长期性能研究[J]. 工程力学,2021,38(2):198-210. [11] 郭君渊,王俊颜,杲晓龙,等. 采用装配式栓钉的钢-UHPC组合板的抗弯性能[J]. 哈尔滨工业大学学报,2024,56(1):63-72. [12] 谢飞,郑晓燕,张文华,等. 考虑滑移的压型钢板-轻骨料混凝土组合板抗弯性能研究[J]. 钢结构,2019,34(3):45-49. [13] 赵俊青,甄玉宝,周鹏,等. 组合梁中性轴位置确定方法及应力分析[J]. 力学与实践,2022,44(1):184-187. -
点击查看大图
计量
- 文章访问数: 26
- HTML全文浏览量: 10
- PDF下载量: 1
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: