A Modified Calculation Method for Bearing Capacity of CHS-to-RHS T-Joints Based on Equivalent Brace Section
-
摘要: 为研究T形主矩支圆管节点与对应矩形管节点承载力之间的关系,基于T形主方支圆管节点承载力试验数据,建立了两类节点的精细化有限元分析模型并开展了参数分析。分析时考虑了各种无量纲几何参数包括支管直径(或边长)与主管宽度比β、主管宽度与壁厚比γ、支管与主管壁厚比τ和主管截面高度与宽度比ξ、支管轴力性质以及主管轴力等因素对节点破坏模式、应力分布和承载力的影响,得到了各种因素对两类节点承载力比值的影响规律。结果表明:节点无量纲几何参数和支管轴力性质等因素对节点承载力影响较大,T形主矩支圆管节点与对应矩形管节点的承载力之间,并非简单的基于支管截面等效的圆支管直径与方支管边长之比(即π/4)的关系。综合考虑多种因素对T形主矩支圆管节点与对应矩形管节点承载力比值的影响,在GB 50017—2017《钢结构设计标准》承载力公式基础上提出了修正系数,用于计算T形主矩支圆管节点承载力,并通过试验数据验证了其合理性。Abstract: In order to study the bearing capacity relations between circular hollow section (CHS)-to-rectangular hollow section (RHS) T-joints and corresponding RHS joints, the refined finite element analysis models of two kinds of joints were established based on the bearing capacity test data of CHS-to-SHS T-joints, and the parameter analysis of the two types of joints was carried out. The effects of various dimensionless geometric parameters, including the ratio of brace diameter (or side length) to chord width β, the ratio of chord width to its wall thickness γ, the thickness ratio of brace to chord τ, the ratio of chord section height to width ξ, the properties of axial force in the brace, and axial force in the chord on the failure mode, stress distribution and bearing capacity of the joints were considered in the analysis, and the effects of various factors on the bearing capacity ratio of the two types of joints were obtained. The results showed that the dimensionless geometric parameters of the joints and the axial force properties of the brace had great influence on the bearing capacity of the joints, and the bearing capacity relations between the CHS-to-RHS T-joints and corresponding RHS joints were not a simple relations based on the ratio of the diameter of the circular brace to the side length of the square brace (i.e. π/4). Considering the influence of various factors on the bearing capacity ratio of CHS-to-RHS T-joints to RHS joints, a correction coefficient was proposed to calculate the bearing capacity of CHS-to-RHS T-joints based on the formula in Standard for Design of Steel Structure (GB 50017—2017), and its rationality was verified by experimental data.
-
[1] 陈以一, 王伟, 周锋. 钢管结构:新需求驱动的形式拓展和性能提升[J]. 建筑结构学报, 2019, 40(3): 1-20. [2] PACKER J A, MASHIRI F R, ZHAO X L, et al. Static and fatigue design of CHS-to-RHS welded connections using a branch conversion method[J]. Journal of Constructional Steel Research, 2007, 63(1): 82-95. [3] BSI. Eurocode 3: design of steel structrues: part 1-8: design of joints: EN 1993-1-8∶2005[S]. Brussels: BSI, 2005. [4] PACKER J A, WARDENIER J, ZHAO X L, et al. Design guide for rectangular hollow section (RHS) joints under predominantly static loading[M]. 2nd ed. Berlin: Springer-Verlag, 2009. [5] AISC. Specification for structural steel buildings: ANSI/AISC 360-22[S]. Chicago: AISC, 2022. [6] 中华人民共和国住房和城乡建设部. 钢结构设计标准: GB 50017—2017[S]. 北京: 中国建筑工业出版社, 2018. [7] 袁智深, 甘宇, 姚尧, 等. N形主方支圆钢管间隙节点受力性能研究[J]. 工业建筑, 2022, 52(3): 132-140. [8] 刘建平,郭彦林. K型方、圆相贯节点的极限承载力非线性有限元分析[J]. 建筑科学, 2001, 17(2): 50-53. [9] 完海鹰,谢玉芳. Y型方圆相贯节点数值模拟试验分析[J]. 合肥工业大学学报(自然科学版), 2004(6): 615-618. [10] 朱正荣,舒兴平. 搭接N型方圆钢管节点极限承载力研究[J]. 湖南大学学报(自然科学版), 2008, 35(1): 11-15. [11] 舒兴平,袁智深,姚尧. N形方主管圆支管相贯节点静力性能试验研究[J]. 建筑结构学报, 2012, 33(12): 47-54. [12] 舒兴平,袁智深,卢倍嵘. N形方主管圆支管搭接节点参数分析与极限承载力计算公式[J]. 建筑结构学报, 2012, 33(12): 55-62. [13] 邓芃,王来,刘艳. 主方支圆空间KT形管节点空间效应和极限承载力研究[J]. 建筑结构, 2011, 41(8): 79-82. [14] 王伟,顾青. X形方圆汇交钢管节点的焊缝轴拉性能试验研究与承载力计算[J]. 建筑结构学报, 2015, 36(3): 92-105. [15] WANG W, GU Q, MA X X, et al. Axial tensile behavior and strength of welds for CHS branches to SHS chord joints[J]. Journal of Constructional Steel Research, 2015, 115(12): 303-315. [16] PANDEY M, YOUNG B. Compression capacities of cold-formed high strength steel tubular T-joints[J]. Journal of Constructional Steel Research,2019,162, 105650. [17] 甘宇. 高强钢T形方主管圆支管相贯节点受力性能研究[D]. 长沙: 中南林业科技大学, 2022: 11-26. [18] 马昕煦, 陈以一. 支方主圆T形相贯节点轴压承载力计算公式[J]. 工程力学, 2017, 34(5): 163-170. [19] 袁智深. N形方主管圆支管相贯节点受力性能与设计方法研究[D]. 长沙: 湖南大学, 2012: 90-94. [20] 陈誉,赵宪忠. 平面 KT 型圆钢管搭接节点有限元参数分析与承载力计算[J]. 建筑结构学报, 2011, 32(4): 134-141.
点击查看大图
计量
- 文章访问数: 6
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 0