Experimental Research on Unconfined Compressive Properties of Marine Clay Stabilized Reinforced by Polypropylene Fibers and Cement
-
摘要: 为了研究水泥和聚丙烯纤维联合加固对海相淤泥软土力学性能的影响,考虑水泥掺量(5%、10%、15%、20%)、纤维长度(6、9、12、15 mm)和纤维含量(0.2%、0.4%、0.6%)等因素,进行了纤维和水泥加固海相黏土的无侧限抗压试验研究。挑选出最佳纤维长度和纤维掺量,采集裂缝处的土体进行了扫描电子显微镜(SEM)分析和X射线衍射(XRD)分析。试验结果表明:仅水泥加固土体、水泥和纤维共同加固土体的破坏模式分别为脆性破坏和塑性破坏,且后者还具有较大的剩余强度;随着纤维掺量的增加,加固土体的强度先提高后下降,存在一个最佳掺量;当水泥掺量为5%~15%时,聚丙烯纤维的最佳掺量为0.4%,当水泥掺量为20%时,纤维最佳掺量为0.2%;与其他长度(6、9、15 mm)纤维相比,长度为12 mm的纤维对水泥土的加固效果最佳;随着水泥掺量的增加,加固土的强度总体呈线性增大,当水泥掺量从5%增加到20%时,无纤维土体的强度增大幅度为129.6%~224.8%,而掺有聚丙烯纤维的土体的强度提高幅度为61.2%~150.7%。微观分析结果表明,水泥加固土的强度主要来自水泥与淤泥中的水发生水化所产生的水化物的胶结作用。Abstract: In order to study the effect of cement and polypropylene fibers combined stabilization on the mechanical properties of marine silt soft soil, factors such as cement content (5%, 10%, 15%, 20%), fiber length (6, 9, 12, 15 mm), and fiber content (0.2%, 0.4%, 0.6%) were considered. Unconfined compressive tests were conducted on marine silt soft soil stabilized with fibers and cement. The optimal fiber length and fiber content were selected, and the soil at the crack site was collected for SEM and XRD analysis. The experimental results showed that the failure modes of the only cement-stabilized soil and the cement and fiber combined stalilization soil were brittle failure and plastic failure, respectively, and the latter also had a relatively large residual strength; with the increase of fiber content, the strength of the stablized soil first increased and then decreased, and there exists an optimal content; when the cement content did not exceed 15%, the optimal fiber content was 0.4%. When the cement content was 20%, the optimal fiber content was 0.2%; compared with other lengths of fibers (6, 9, 15 mm), fibers with a length of 12 mm had the best stabilization effect on cement soil; with the increase of cement content, the strength of the stabilized soil increased almost linearly. When the cement content increased from 5% to 20%, the strength of the non-fiber soil increased by 15% to 20%, while the strength of the soil added with polypropylene fibers increases by 15% to 20%. From microscopic analysis, it could be concluded that the strength of cement stabilized soil mainly comes from the bonding effect of hydrates produced by the hydration of cement and water in the sludge.
-
Key words:
- marine clay /
- soft soil /
- polypropylene fiber /
- compressive strength /
- unconfined strength /
- SEM /
- XRD
-
[1] 刘宝生,唐朝生,李建,等. 纤维加筋土工程性质研究进展[J]. 工程地质学报,2013,21(4):540-547. [2] MAHER M H,HO Y C. Mechanical properties of kaolinite/fiber soil composite[J]. Journal of Geotechnical Engineering,1994,120(8):1381-1393. [3] ALRASHIDI M J K,ALRASHIDI M.Durability and mechanistic characteristics of fiber reinforced soil-cement mixtures[J].The International Journal of Pavement Engineering, 2006, 7(1) : 53-62. [4] BENMOKRANE B, ELGABBAS F, AHMED E A,et al. Characterization and comparative durability study of glass/vinylester, basalt/vinylester, and basalt/epoxy FRP Bars[J]. Journal of Composites for Construction, 2015, 19(6), 04015008. [5] 李广信,陈轮,郑继勤,等. 纤维加筋粘性土的试验研究[J]. 水利学报,1995(6):31-36. [6] 陈轮,李广信. 纤维加筋粘性土的抗拉和抗裂性能研究[J]. 地基处理,1992,3(2):25-31. [7] KUMAR A,WALIA B S,MOHAN J.Compressive strength of fiber reinforced highly compressible clay [J].Construction and Building Materials,2006,20(10):1063-1068. [8] GHAVAMI K,TOLEDO F R,BARBOSA N P.Behaviour of composite soil reinforced with natural fibres [J].Cement and Concrete Composites,1999,21(1): 39-48. [9] KHATTAK M J,ALRASHIDI M. Mechanistic characteristics of processed cellulose-fiber reinforced soil-cement mixtures[C]// Geo-Frontiers Congress.United States: ASCE,2005. [10] 薛臻.纤维加筋土工程性质国内外研究进展[J]. 四川建材,2018,44(8):61-62. [11] 闫宁霞,娄宗科.掺纤维固化土强度变化的研究[J]. 西北农林科技大学学报(自然科学版),2006(8):146-148. [12] 薛志佳,罗江,高建强,等.混入聚丙烯纤维电渗法加固波士顿蓝黏土模型试验[J/OL].工程地质学报,1-12[2025-02-28].https://inds.cnki.net/kcms/detail?v=kJNa6IlOxAgH/jJYzjanx5%2byjhkNp2hRW4NeTG5mlpR997a6YRY1bbvLYeHpVC6i MZJWb3ejW%2bsK7coLggW7dyYcEGiX3J8ezjkDApZYHNU=. [13] 杨博瀚,翁兴中,刘军忠,等.改性聚丙烯纤维和水泥加固黄土的力学性能[J]. 建筑材料学报,2016,19(4):694-701. [14] 唐朝生,施斌,高玮,等. 含砂量对聚丙烯纤维加筋黏性土强度影响的研究[J]. 岩石力学与工程学报,2007(增刊1):2968-2973. [15] 佟钰,刘阳,罗超,等. 聚丙烯纤维改性水泥土的力学性能研究[J]. 沈阳建筑大学学报(自然科学版),2020,36(3):507-513. [16] 夏智.聚丙烯纤维混凝土基本力学性能试验研究[J/OL].武汉理工大学学报(交通科学与工程版),1-9[2025-02-28].https://inds.cnki.net/kcms/detail?v=kJNa6IlOxAgH/jJYzjanx5%2byjhkNp2hRW4NeTG5mlpSWrvloFluYC6ciC2YohpC4S k9FMF4U0XRXF%2bTNGZ58b%2bybtusGjMRedqtpZtmGGgM=. [17] 张刚,衣松杰,胡敏,等. 聚丙烯纤维对掺再生集料水泥混凝土力学强度的影响[J]. 科学技术创新,2024(8):135-138. [18] 肖庆一,苏刚,张宝虎,等. 聚丙烯纤维对二灰稳定红黏土路用性能的影响及微观机理分析[J]. 长安大学学报(自然科学版), 2021, 41(5): 34-42. [19] 中华人民共和国住房和城乡建设部.土工试验方法标准:GB/T 50123—2019[S].北京:中国计划出版社,2019. [20] 中华人民共和国住房和城乡建设部.水泥土配合比设计规程:JGJ/T 233—2011[S]. 北京:中国建筑工业出版社,2011. -

计量
- 文章访问数: 18
- HTML全文浏览量: 5
- PDF下载量: 1
- 被引次数: 0