Axial Compressive Performance and Design Method for Reinforced Hollow High-Strength/Ultra-High-Strength Concrete-Filled Square Steel Tubular Columns
-
摘要: 配筋空心钢管高强/超高强混凝土构件具有生产工艺成熟、成本较低、质量轻、承载力高等优势,可作为预制构件应用于工程结构中,在大跨度基坑支护、立体停车设施等建构筑物中应用前景广阔。然而,现有设计方法不适用于预测混凝土强度等级C80以上构件的轴压承载力,也尚未考虑空心率和钢管壁厚变化引起的外钢管峰值前屈曲对该类构件轴压性能的影响。为此,基于可靠有限元分析模型开展了系统的参数分析,基于参数分析结果及现有试验结果提出了轴压承载力计算公式,并采用有限元分析结果及试验结果验证了公式的准确性。研究表明:构件轴压承载力受空心率与宽厚比的共同影响,对于空心率大于0.25或宽厚比不满足现行钢管混凝土标准要求的构件,钢材力学性能无法得到充分发挥;所提出的轴压承载力计算式与现有试验及有限元结果吻合较好,预测结果与模拟结果比值的平均值为0.935,变异系数为0.108。预测结果整体偏于安全,最大高估幅度仅为8.6%。
-
关键词:
- 配筋空心方钢管高强/超高强混凝土 /
- 材料本构 /
- 有限元建模 /
- 轴压 /
- 承载力设计方法
Abstract: Reinforced hollow high-strength/ultra-high strength concrete-filled square steel tubular (RHHS-CFST) columns are a kind of prefabricated members with advantages such as mature production techniques, low cos, light weight, and high bearing capacity. As prefabricated components, they hold broad application potential in engineering structures, particularly for long-span foundation excavation support systems and multi-level parking facilities. However, there is no design method capable of accurately predicting the axial compressive bearing capacity of this member. The available design methods cannot account for the influence of high concrete strength (exceeding C80 grade) or the early buckling of the steel tube caused by the high hollow ratio and insufficient wall thickness. To address this issue, this paper conducted a systematic parametric investigation with a reliable finite element modeling method (FEM). Subsequently, a new expression was proposed to predict the axial compressive bearing capacity based on available test data and finite element analytical results. The results showed that the hollow ratio and width-to-thickness ratio of the steel tube significantly affected the axial compressive bearing capacity. For the members with a hollow ratio greater than 0.25 and a width-to-thickness ratio unsatisfying the requirements of current design codes for concrete-filled steel tubes, local buckling of the steel tube might occur before reaching the peak load, leading to a reduction in strength. The predicted results from the proposed expression matched well with the FEM results and test data. The average ratio of predicted to measured/FEM results was 0.935, with a coefficient of variation of 0.108. This indicates that the proposed design method can safely predict the axial compressive bearing capacity of RHHS-CFST members. The highest overestimation by the proposed design method was only 8.6%. -
[1] 韩林海. 钢管混凝土结构原理[M]. 北京: 中国建筑工业出版社, 2023. [2] 蒋小慧. 空心钢管混凝土支撑力学性能与应用研究[D]. 西安: 长安大学, 2022. [3] 中华人民共和国住房和城乡建设部. 钢管混凝土结构技术规范: GB 50936-2014[S]. 北京: 中国建筑工业出版社, 2014. [4] 中华人民共和国住房和城乡建设部. 钢管混凝土混合结构技术标准: GB/T 51446-2021[S]. 北京: 中国建筑工业出版社, 2021. [5] 韩林海. 钢管混凝土结构: 理论与实践[M]. 4版. 北京: 科学出版社, 2022. [6] 中国建设标准化协会. 矩形钢管混凝土结构技术规程: CECS159∶2004[S]. 北京: 中国计划出版社, 2004. [7] 查晓雄, 余敏, 钟善桐. 《钢管混凝土结构技术规范》中承载力公式的一致性研究[J]. 建筑结构学报, 2013, 34(增刊1): 11-20. [8] TAO Z, WANG Z B, YU Q. Finite element modelling of concrete-filled steel stub columns under axial compression[J]. Journal of Construction Steel Research, 2013, 89(10): 121-131. [9] ZHAO M Z, LEHMAN D E, ROEDER C W. Modeling recommendations for RC and CFST sections in LS-Dyna including bond slip[J]. Engineering Structures, 2021, 229, 111612. [10] LEE J, FENVES G L. Plastic-Damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8): 892-900. [11] LUBLINER J, OLIVER J, OLLER S, et al. A plastic-damage model for concrete[J]. International Journal of Solids&Structures, 1989, 25(3): 299-326. [12] 李旭. 配筋空心方钢管高强混凝土轴压短柱力学性能研究[D]. 沈阳: 沈阳建筑大学, 2023. [13] 张斌, 胡红松, 杨朱金. 方钢管超高强钢纤维混凝土柱轴压性能研究[J]. 建筑材料学报, 2023, 26(5): 547-554. [14] YAN J B, CHEN A Z, ZHU J S. Behaviours of square UHPFRC-filled steel tubular stub columns under eccentric compression[J]. Thin-Walled Structures, 2020, 159(2), 107222. [15] YAN J B, YANG X Y, LUO Y L, et al. Axial compression behaviours of ultra-high performance concrete-filled Q690 high-strength steel tubes at low temperatures[J]. Thin-Walled Structures, 2021, 169(5), 108419. [16] 冯宸. 高强钢管超高性能混凝土短柱轴心受压性能研究[D]. 重庆: 重庆大学, 2022. [17] 周凯凯. 方钢管超高性能混凝土短柱轴心受压性能研究[D]. 武汉: 武汉大学, 2019. [18] CHEN S M, ZHANG R, JIA L J, et al. Structural behavior of UHPC filled steel tube columns under axial loading[J]. ThinWalled Structures, 2018, 130(2): 550-563. [19] 颜燕祥, 徐礼华, 蔡恒, 等. 高强方钢管超高性能混凝土短柱轴压承载力计算方法研究[J]. 建筑结构学报, 2019, 40(12): 128-137. [20] 广东省住房和城乡建设厅. 锤击式预应力混凝土管桩工程技术规程: DBJ/T 15-22-2021[S]. 北京: 中国城市出版社, 2021. [21] 建华建材投资有限公司. 预制高强钢管混凝土管桩(SC桩): Q/321183 PJC 006-2015[S]. 珠海: 建华建材投资有限公司, 2015. -
点击查看大图
计量
- 文章访问数: 42
- HTML全文浏览量: 10
- PDF下载量: 1
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: