CFD-Based Pressurization Rate Optimization for Pressurized Water Reactor Containment Testing
-
摘要: 安全壳整体性试验是核电厂在役期间最重要的试验之一,针对该试验充压速率能否优化提升的问题,首先分析了该试验过程安全壳壳内气体运动传热机制,提出了壳内气体的合理热边界条件;接着采用计算流体动力学方法,建立了精细的安全壳壳内流体域仿真分析模型,采用安全壳整体性试验历史数据对模型的可靠性进行验证;基于验证后的模型对充压速率提升至60 kPa/h后安全壳壳内气体运动状态进行了仿真计算。结果表明,充压过程中安全壳壳内气体总体上呈缓慢流动,气体最大平均速度仅为0.165 m/s;充压过程安全壳壳内气体温度呈非线性变化,充压做功引起的壳内气体平均温度升高5.75℃;充压过程壳内气体压力总体上分布均匀,除充压孔附近2 m范围外,其余区域压力梯度均不超过5 Pa,充压速率提升至60 kPa/h引起的壳内气体状态改变有限。Abstract: The integrity test of the containment is one of the most crucial tests during the operation of nuclear power plants. To optimize and improve the pressurization rate for this test, the heat transfer mechanism of gas movement inside the containment during the experimental process was analyzed, and reasonable thermal boundary conditions for the gas were proposed. The computational fluid dynamics (CFD) method adopted used to establish a refined simulation analysis model for the fluid domain inside the containment. Historical data from the integrity test of the containment were employed to verify the reliability of the model. Based on the validated model, an analysis was conducted on the gas movement inside the containment after increasing the pressurization rate to 60 kPa/h. The results showed that the gas inside the containment flowed slowly, with a maximum average velocity of 0.165 m/s. The gas temperature exhibited a nonlinear change, rising by an average of 5.75℃. During pressurization, the gas pressure was uniformly distributed, and except for a range of 2 meters near the pressurization port, the pressure gradient in all other areas did not exceed 5 Pa. In summary, increasing the pressurization rate to 60 kPa/h caused only minor changes to the gas state inside the vessel.
-
Key words:
- pressurized water reactor containment /
- integrity test /
- pressurization rate /
- gas state /
- CFD
-
[1] 杜宇, 刘勇, 丁小川. 福清核电厂1、2号机组安全壳整体泄漏率试验充压和降压速率优化的分析和研究[J]. 核科学与工程, 2017, 37(2): 199-202. [2] GHAVAMIAN S, COURTOIS A, VALFORT J L. Mechanical simulations of SANDIA Ⅱ tests OECD ISP 48 benchmark[J]. Nuclear Engineering and Design. 2007, 237(12/13): 1406-1418. [3] LABORATORIES S N. Overpressurization test of a 1: 4-scale prestressed concrete containment vessel model[R]. Washington: U. S. NRC, 2003. [4] ANDERSON P. Analytic study of the steel liner near the equipment hatch in a 1: 4 scale containment model[J]. Nuclear Engineering and Design. 2008, 238(7): 1641-1650. [5] 周文权, 曲小朋, 孟凡彬. 核电站安全壳整体密封性试验方法[J]. 核动力工程, 1997(2): 58-62. [6] 侍今奇. 重水堆安全壳整体密封性能测试技术研究[D]. 上海: 上海交通大学, 2007. [7] 褚英杰, 欧阳钦. 安全壳整体泄漏率计算方法的比较分析[J]. 核动力工程, 2010, 31(6): 33-37. [8] 黄海涛, 杨炯, 马先宏. 美国核电厂安全壳整体密封性试验[J]. 能源与节能, 2016(5): 85-87. [9] 刘凯, 刘嘉兴, 徐海翔, 等. 国内外标准中预应力混凝土安全壳结构整体性试验的比较[J]. 工业建筑, 2021, 51(12): 1-6. [10] 何锐, 贾武同, 赵健. 安全壳泄漏率测量仪表体积权重分配方法研究[J]. 核动力工程, 2015, 36(6): 101-104. [11] 黄晓明, 李骏, 许国良, 等. 反应堆安全壳密封结构泄漏机理与预测模型的研究[J]. 核动力工程, 2016, 37(3): 116-121. [12] 沈东明, 蔡建涛, 何锐, 等. 基于统计软件R的安全壳泄漏率试验数据有效性分析[J]. 核动力工程. 2020, 41(5): 99-103. [13] 杨昕光, 宋翔, 单强, 等. 充压速率对安全壳内部气体稳定时间的影响性研究[J]. 工业建筑, 2021, 51(12): 68-73 [14] 王洪伟. 我所理解的流体力学[M]. 2版. 北京: 国防工业出版社, 2022. [15] 王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004. [16] 单建强. 压水堆核电厂系统与设备[M]. 西安: 西安交通大学出版社, 2021. -
点击查看大图
计量
- 文章访问数: 29
- HTML全文浏览量: 7
- PDF下载量: 1
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: