中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

持续荷载下预应力纤维增强复合材料筋混凝土梁变形性能研究进展

严大威 薛伟辰 江佳斐

严大威, 薛伟辰, 江佳斐. 持续荷载下预应力纤维增强复合材料筋混凝土梁变形性能研究进展[J]. 工业建筑, 2024, 54(6): 1-12. doi: 10.3724/j.gyjzG24043001
引用本文: 严大威, 薛伟辰, 江佳斐. 持续荷载下预应力纤维增强复合材料筋混凝土梁变形性能研究进展[J]. 工业建筑, 2024, 54(6): 1-12. doi: 10.3724/j.gyjzG24043001
YAN Dawei, XUE Weichen, JIANG Jiafei. A State-of-the-Art Review on Deformation Performance of Concrete Beams Prestressed with FRP Tendons Under Sustained Loading[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 1-12. doi: 10.3724/j.gyjzG24043001
Citation: YAN Dawei, XUE Weichen, JIANG Jiafei. A State-of-the-Art Review on Deformation Performance of Concrete Beams Prestressed with FRP Tendons Under Sustained Loading[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 1-12. doi: 10.3724/j.gyjzG24043001

持续荷载下预应力纤维增强复合材料筋混凝土梁变形性能研究进展

doi: 10.3724/j.gyjzG24043001
基金项目: 

国家自然科学基金重点项目(52130806)。

国家重点研发计划项目(2022YFB3706500)

详细信息
    作者简介:

    严大威,博士研究生,主要从事FRP筋混凝土结构方面的研究,2110045@tongji.edu.cn。

    通讯作者:

    薛伟辰,博士,教授,博士生导师,主要从事土木工程复合材料及预应力混凝土结构的研究,xuewc@tongji.edu.cn。

A State-of-the-Art Review on Deformation Performance of Concrete Beams Prestressed with FRP Tendons Under Sustained Loading

  • 摘要: 持续荷载作用下,纤维增强复合材料(FRP)筋蠕变松弛和混凝土收缩徐变引起的过大的附加变形将影响预应力FRP筋混凝土(FRP-PC)梁的正常使用。通过对FRP-PC梁长期性能及其设计方法的最新研究进展进行综述,归纳了不同FRP筋的蠕变和松弛特性及其预测方法,总结了有关有黏结FRP-PC梁和体外FRP-PC梁的长期性能试验结果,介绍了基于按龄期调整有效模量法(AEMM)或基于积分型徐变表达式的FRP-PC梁变形性能时随有限元分析方法,以及相应的多参数分析结果,分析了FRP-PC梁长期变形的计算理论与简化设计方法。最后,对今后FRP-PC梁长期性能的研究方向进行了展望。
  • [1] HOU B R, LI X G, MA X M, et al. The cost of corrosion in China [J]. npj Materials Degradation, 2017, 1(1): 1-10.
    [2] GUDONIS E, TIMINSKAS E, GRIBNIAK V, et al. Frp Reinforcement for Concrete Structures: State-of-the-Art Review of Application and Design [J]. Engineering Structures and Technologies, 2014, 5(4): 147-158.
    [3] ASKAR M K, HASSAN A F, AL-KAMAKI Y S S. Flexural and shear strengthening of reinforced concrete beams using FRP composites: A state of the art [J]. Case Studies in Construction Materials, 2022,17,e01189.
    [4] 尹世平, 华云涛, 徐世烺. FRP配筋混凝土结构研究进展及其应用 [J]. 建筑结构学报, 2021, 42(1): 134-150.
    [5] RAFIEIZONOOZ M, KIM J-H J, VARAEE H, et al. Testing methods and design specifications for FRP-prestressed concrete members: A review of current practices and case studies [J]. Journal of Building Engineering, 2023, 73,106723.
    [6] ZDANOWICZ K, KOTYNIA R, MARX S. Prestressing concrete members with fibre-reinforced polymer reinforcement: State of research [J]. Structural Concrete, 2019, 20(3): 872-885.
    [7] 董志强, 吴刚. FRP筋增强混凝土结构耐久性能研究进展 [J]. 土木工程学报, 2019, 52(10): 1-19

    ,29.
    [8] BANIBAYAT P, PATNAIK A. Creep rupture performance of basalt fiber-reinforced polymer bars [J]. Journal of Aerospace Engineering, 2015, 28(3),04014074.
    [9] FERGANI H, DI BENEDETTI M, OLLER C M, et al. Long-term performance of GFRP bars in concrete elements under sustained load and environmental actions [J]. Composite Structures, 2018, 190: 20-31.
    [10] TORRES L, MIAS C, TURON A, et al. A rational method to predict long-term deflections of FRP reinforced concrete members [J]. Engineering Structures, 2012, 40: 230-239.
    [11] MIAS C, TORRES L, GUADAGNINI M, et al. Short and long-term cracking behaviour of GFRP reinforced concrete beams [J]. Composites Part B:Engineering, 2015, 77: 223-231.
    [12] 董志强, 吴刚. 基于试验数据分析的FRP筋混凝土受弯构件最大裂缝宽度计算方法 [J]. 土木工程学报, 2017, 50(10): 1-8.
    [13] RAO A S P, JAYARAMAN R. Creep and shrinkage analysis of partially prestressed concrete members [J]. Journal of Structural Engineering, 1989, 115(5): 1169-1189.
    [14] WEN Q J. Long-term effect analysis of prestressed concrete box-girder bridge widening [J]. Construction and Building Materials, 2011, 25(4): 1580-1586.
    [15] BISCHOFF P H. Deflection calculation of FRP reinforced concrete beams based on modifications to the existing Branson equation [J]. Journal of Composites for Construction, 2007, 11(1): 4-14.
    [16] JAKUBOVSKIS R, KAKLAUSKAS G, GRIBNIAK V, et al. Serviceability analysis of concrete beams with different arrangements of GFRP bars in the tensile zone [J/OL]. Journal of Composites for Construction, 2014, 18(5)[2014-02-03]. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000465.
    [17] DILGER W H. Creep analysis of prestressed concrete structures using creep-transformed section properties [J]. PCI Journal, 1982, 27(1): 98-118.
    [18] 中华人民共和国住房和城乡建设部. 纤维增强复合材料筋混凝土桥梁技术标准: CJJ/T 280—2018[S]. 北京:中国建筑工业出版社, 2018.
    [19] American Concrete Institute (ACI). Guide for the design and construction of structural concrete reinforced with fiber-reinforced polymer(FRP) bars:ACI PRC-440.1-15 [S]. Farmington Hills:ACI, 2015.
    [20] American Concrete Institute (ACI). 440.4R-04: Prestressing concrete structures with FRP tendons[S]. Farmington Hills: ACI,2004.
    [21] Canadian Standards Association. Commentary on CSA S6: 19, Canadian Highway Bridge Design Code: 1488321604[S]. Toronto: CSA Group, 2019.
    [22] ZHAO J, MEI K, WU J. Long-term mechanical properties of FRP tendon-anchor systems: A review [J]. Construction and Building Materials, 2020, 230,117017.
    [23] D'ANTINO T, PISANI M A. Long-term behavior of GFRP reinforcing bars [J]. Composite Structures, 2019, 227,111283.
    [24] ESMAEILI Y, MOHAMED K, NEWHOOK J, et al. Assessment of creep rupture and long-term performance of GFRP bars subjected to different environmental exposure conditions under high sustained loads [J]. Construction and Building Materials, 2021, 300,124327.
    [25] NAJAFABADI E P, BAZLI M, ASHRAFI H, et al. Effect of applied stress and bar characteristics on the short-term creep behavior of FRP bars [J]. Construction and Building Materials, 2018, 171: 960-968.
    [26] SOKAIRGE H, ELGABBAS F, RASHAD A, et al. Long-term creep behavior of basalt fiber reinforced polymer bars [J]. Construction and Building Materials, 2020, 260,120437.
    [27] GUIMARAES, BURGOYNE. Creep behaviour of a parallel-lay aramid rope [J]. Journal of Materials Science, 1992,27:2473-2489.
    [28] CHAMBERS J J, BURGOYNE C J. An experimental investigation of the stressrupture behaviour of a parallel-lay aramid rope [J]. Journal of Materials Science, 1990,25:3723-3730.
    [29] YOUSSEF T, BENMOKRANE B. Creep behavior and tensile properties of GFRP bars under sustained service loads[J]. Special Publication, 2011, 275: 1-20.
    [30] BENMOKRANE B, BROWN V L, MOHAMED K, et al. Creep-rupture limit for GFRP bars subjected to sustained loads [J]. Journal of Composites for Construction, 2019, 23(6),06019001.
    [31] WANG X, SHI J, WU Z, et al. Creep strain control by pretension for basalt fiber-reinforced polymer tendon in civil applications [J]. Materials & Design, 2016, 89: 1270-1277.
    [32] SHI J, WANG X, WU Z, et al. Creep behavior enhancement of a basalt fiber-reinforced polymer tendon [J]. Construction and Building Materials, 2015, 94: 750-757.
    [33] SAADATMANESH H, TANNOUS F E. Relaxation, creep, and fatigue behavior of carbon fiber reinforced plastic tendons [J]. ACI Materials Journal, 1999, 96(2): 143-153.
    [34] WANG X, SHI J, LIU J, et al. Creep behavior of basalt fiber reinforced polymer tendons for prestressing application [J]. Materials & Design, 2014, 59: 558-564.
    [35] FINDLEY W N. Mechanism and mechanics of creep of plastics and stress relaxation and combined stress creep of plastics [M]. Providence: Division of Engineering, Brown University, 1960.
    [36] ZAWAM M, SOUDKI K, WEST J S. Effect of prestressing level on the time-dependent behavior of GFRP prestressed concrete beams [J]. Journal of Composites for Construction, 2017, 21(4),04017001.
    [37] 中国治金建设协会. 纤维增强复合材料工程应用技术标准:GB 50608—2020[S]. 北京:中国计划出版社, 2020.
    [38] 上海市住房和城乡建设管理委员会. 纤维增强复合材料筋混凝土结构技术标准:DG/TJ 08—2398[S]. 上海:同济大学出版社, 2022.
    [39] ZOU P X W. Long-term properties and transfer length of fiber-reinforced polymers [J]. Journal of Composites for Construction, 2003, 7(1): 10-19.
    [40] HIESCH D, PROSKE T, GRAUBNER C A, et al. Theoretical and experimental investigation of the time-dependent relaxation rates of GFRP and BFRP reinforcement bars [J]. Structural Concrete, 2023, 24(2): 2800-2816.
    [41] GRACE N F. Transfer length of CFRP/CFCC strands for double-T girders [J]. PCI Journal, 2000, 45(5): 110-126.
    [42] BRAIMAH A, GREEN M F, SOUDKI K A. Long-term behavior of CFRP prestressed concrete beams [J]. PCI Journal, 2003, 48(2):98-107.
    [43] ZOU P X W. Long-term deflection and cracking behavior of concrete beams prestressed with carbon fiber-reinforced polymer tendons [J]. Journal of Composites for Construction, 2003, 7(3): 187-193.
    [44] ZOU P X W. Theoretical study on short-term and long-term deflections of fiber reinforced polymer prestressed concrete beams [J]. Journal of Composites for Construction, 2003, 7(4): 285-291.
    [45] TERRASI G, MEIER U, AFFOLTER C. Long-term bending creep behavior of thin-walled CFRP tendon pretensioned spun concrete poles [J]. Polymers, 2014, 6(7): 2065-2081.
    [46] SOVJAK R, HAVLASEK P, VITEK J. Long-term behavior of concrete slabs prestressed with CFRP rebars subjected to four-point bending [J]. Construction and Building Materials, 2018, 188: 781-792.
    [47] PAVLOVIĆ A, DONCHEV T, PETKOVA D, et al. Short- and long-term prestress losses in basalt FRP prestressed concrete beams under sustained loading [J]. Journal of Composites for Construction, 2022, 26(6),04022069.
    [48] ZAWAM M, SOUDKI K, WEST J S. Factors affecting the time-dependent behaviour of GFRP prestressed concrete beams [J]. Journal of Building Engineering, 2019, 24,100715.
    [49] 薛伟辰,刘婷,严大威,等. 有粘结预应力FRP筋混凝土梁长期性能试验研究 [R]. 上海:同济大学,2023.
    [50] XUE W C, LIU T. Time-dependent behavior of concrete beams externally prestressed with carbon fiber-reinforced polymer tendons for 1 000 days [J]. ACI Structural Journal, 2021, 118(3): 15-26.
    [51] 曹国辉, 方志. 体外CFRP筋预应力混凝土箱梁长期受力性能试验研究 [J]. 土木工程学报, 2007(2): 18-24.
    [52] 曹国辉, 方志. 体外配置 CFRP 筋预应力混凝土箱梁收缩徐变效应分析 [J]. 铁道学报, 2008, 30(6): 131-136.
    [53] 李红芳. 配置体外CFRP预应力筋混凝土梁的受力性能研究 [D]. 长沙: 湖南大学, 2008.
    [54] SHI J, WANG X, WU Z, et al. Long-term mechanical behaviors of uncracked concrete beams prestressed with external basalt fiber-reinforced polymer tendons [J]. Engineering Structures, 2022, 262,114309.
    [55] ZAWAM M H M. Long-term behaviour of GFRP prestressed concrete beams [D]. Waterloo: The University of Waterloo, 2015.
    [56] BRAIMAH A, GREEN M F, SOUCLKI K A. Long-term behavior of CFRP prestressed concrete beams [J]. PCI Journal, 2003, 48(2): 98-107.
    [57] SAIEDI R, GREEN M F, FAM A. Behavior of CFRP-prestressed concrete beams under sustained load at low temperature [J]. Journal of Cold Regions Engineering, 2013, 27(1): 1-15.
    [58] 薛伟辰,刘婷,严大威,等. 体外预应力FRP筋混凝土梁长期性能试验研究 [R]. 上海:同济大学, 2023.
    [59] BAZANT Z P. Prediction of concrete creep and shrinkage: past, present and future [J]. Nuclear Engineering and Design, 2001, 203(1): 27-38.
    [60] LOU T J, LOPES S M R, LOPES A V. Time-dependent behavior of concrete beams prestressed with bonded AFRP tendons [J]. Composites Part B: Engineering, 2016, 97: 1-8.
    [61] LOU T J, KARAVASILIS T L. Time-dependent assessment and deflection prediction of prestressed concrete beams with unbonded CFRP tendons [J]. Composite Structures, 2018, 194: 365-376.
    [62] 刘婷. 新型预应力混凝土梁长期性能试验与理论研究 [D]. 上海: 同济大学, 2012.
    [63] LIU X, YU W, HUANG Y, et al. Long-term behaviour of recycled aggregate concrete beams prestressed with carbon fibre-reinforced polymer (CFRP) tendons [J]. Case Studies in Construction Materials, 2023, 18,e01785.
    [64] YOUAKIM S A, KARBHARI V M. An approach to determine long-term behavior of concrete members prestressed with FRP tendons [J]. Construction and Building Materials, 2007, 21(5): 1052-1060.
    [65] PÁEZ P M. A simplified approach to determine the prestress loss and time-dependent deflection in cracked prestressed concrete members, prestressed with fiber reinforced polymers or steel tendons [J]. Engineering Structures, 2023, 279,115523.
  • 加载中
计量
  • 文章访问数:  258
  • HTML全文浏览量:  23
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-30
  • 网络出版日期:  2024-06-24

目录

    /

    返回文章
    返回