Research on Dynamic Crack Propagation Behavior of Steel-HSC Interface Under Impact Loads
-
摘要: 对于钢-高强混凝土组合结构,钢和高强混凝土的界面性能是决定二者共同工作机制的关键。为此,针对冲击荷载作用下带剪力钉的钢-高强混凝土界面动态力学性能展开试验和理论研究,利用分离式霍普金森压杆系统对应力波作用下的组合试件进行试验研究,并采用试验数值法得到组合试件裂纹尖端的复应力强度因子。研究结果表明:1)冲击荷载作用下双材料直切横半圆盘弯曲(BNSCB)试件在剪力钉处不仅容易应力集中,而且对界面裂纹的扩展具有一定程度的抑制作用。2)在使用三维模型求解试件的应力强度因子时,取试件界面裂纹尖端的断裂参数K1、K2沿厚度方向的平均值作为BNSCB试件参数K1、K2的数值解。3)BNSCB试件界面裂纹扩展的最大速度和平均速度均随着高强混凝土强度的增大而增大。4)随着高强混凝土强度的增大,BNSCB试件K1值将增大。
-
关键词:
- 钢-高强混凝土界面 /
- 冲击荷载 /
- 霍普金森压杆试验 /
- 双材料直切槽半圆盘弯曲试件 /
- 裂纹扩展速度
Abstract: For steel-HSC(high-strength concrete) composite structures, the interface performance of steel and high-strength concrete is the key to determine the working mechanism of the two. To this end, the paper conducted experimental and theoretical research on the dynamic mechanical properties of the steel-HSC interface with shear studs under impact loads. The composite specimens under stress waves were experimentally studied using a split Hopkinson bar system, and the complex stress intensity factor at the crack tip of the composite specimen was obtained by an experimental numerical method. The research results showed that: 1) Under impact loads, the BNSCB specimen was not only prone to stress concentration at the shear studs, but also had a certain degree of inhibitory effect on the propagation of interface cracks. 2) When using a three-dimensional model to solve the stress intensity factor of the specimen, the average values of K1 and K2 along the thickness direction were taken as the numerical solution of the BNSCB specimen parameter K1 and K2. 3) The maximum and average velocities of the interface crack propagation of the BNSCB specimen increased with the increase of the high-strength concrete strength. 4) With the increase of the high-strength concrete strength, the fracture parameter K1 value at the interface crack tip of the BNSCB specimen would increase. -
[1] 赵秋, 杨明, 李聪. 不同钢纤维掺量高配筋超高性能混凝土板抗弯试验研究[J]. 工业建筑, 2018, 48(10): 148-151, 125. [2] 张志勇, 刘方宁, 陈晓东. UHPC在现浇预应力混凝土箱梁齿块中的应用[J]. 建筑结构, 2023, 53(增刊1): 1754-1760. [3] SHAO N N X, DENG N N L, CAO N N J. Innovative steel-UHPC composite bridge girders for long-span bridges[J]. Frontiers of Structural and Civil Engineering, 2019, 13(4): 981-989. [4] NEWMARK N M, SIESS C P, VIEST I M. Tests and analysis of composite beams with incomplete interaction[J]. Experimental Stress Analysis, 1951, 9(1): 75-92. [5] CORNELL C A, KRAWINKLER H. Progress and challenges inseismic performance assessment [J]. PEER Center News, 2000, 3(2): 4-6. [6] ROTTER J, ANSOURIAN P. Cross-section behaviour and ductility in composite beams[J]. Proceedings of the Institution of Civil Engineers, 1979, 67(2):453-474. [7] OLLGAARD J G, SLUTTER R G, FISHER J W. Shear strength of stud connectors in lightweight and normal weight concrete [J]. Engineering Journal, 1971(4): 71-10. [8] 朱劲松, 王修策, 丁婧楠. 钢-UHPC华夫板组合梁负弯矩区抗弯性能试验[J]. 中国公路学报, 2021, 34(8): 234-245. [9] 杜国锋, 曹煊, 谢向东, 等. 高强钢管超高性能混凝土界面黏结滑移性能试验[J]. 河南理工大学学报(自然科学版), 2022, 29(3): 1-9. [10] 王秋维, 梁林, 史庆轩, 等. 方钢管超高性能混凝土界面黏结滑移性能[J]. 湖南大学学报(自然科学版), 2022, 49(11): 116-125. [11] QIU H, LAI H P, LIAO F Y, CHEN Y F. Experimental study on dynamic fracture of UHPC-NC specimens after high temperature burning treatment[J]. Theoretical and Applied Fracture Mechanics, 2024, 131, 104385. [12] 安然, 王有志. 剪力钉连接件拉剪共同作用抗剪性能[J]. 吉林大学学报(工学版), 2023, 53(9): 2554-2562. [13] 姚亚东. 有格室前后承压板式钢混结合段静力行为研究[D]. 成都: 西南交通大学, 2016. [14] YANG J, CHEN B, SU J, et al. Effects of fibers on the mechanical properties of UHPC: a review[J]. Journal of Traffic and Transportation Engineering, 2022, 9(3):363-387. [15] 中华人民共和国住房和城乡建设部.钢结构设计标准:GB 50017—2017[S].北京:中国建筑工业出版社, 2018. [16] QIU H, CHEN R Y, ZHENG W Q, et al. Experimental study on dynamic fracture of rock-mortar specimens with different interface trajectories[J]. Theoretical and Applied Fracture Mechanics, 2023, 236, 103983. [17] 占玉林, 张程, 邵俊虎, 等. 剪力钉约束下高强混凝土收缩特性的数值模拟研究[J]. 公路, 2023, 68(10): 292-299. [18] 张爱平. 钢-混组合结构栓钉连接件抗剪性能研究[D]. 杭州: 浙江大学, 2020. [19] 许金泉. 界面力学[M]. 北京:科学出版社, 2006. [20] PARMIGIANI J P, THOULESS M D. The roles of toughness and cohesive strength on crack deflection at interfaces[J]. J. Mech. Phys. Solids, 2006, 54: 266-287. [21] 贾普荣, 张元冲. 双材料界面裂纹应力强度因子计算[J]. 机械科学与技术, 2001, 20(9):15-17, 34.
点击查看大图
计量
- 文章访问数: 10
- HTML全文浏览量: 2
- PDF下载量: 0
- 被引次数: 0