Research on the Wind-Induced Interference Effect on New and Existing Cooling Towers of the Same Size
-
摘要: 电厂二次扩建工程会加剧新建和既有冷却塔群的风致干扰效应,而塔群干扰是引起冷却塔风毁倒塌的重要原因之一,现行规范和现有研究忽略了此类情况下冷却塔风荷载极值的取值研究。以广西钦州某电厂新建与既有同尺寸冷却塔群为对象,在既有串列双塔组合的基础上,再考虑新建冷却塔的三塔、四塔组合共240个工况,采用刚体测压风洞试验分析新、老冷却塔表面风压平均和脉动分布特性。在此基础上,以整体阻力系数为准则定量对比分析不同塔群组合形式下新建塔和既有塔的干扰效应,提出了新建和既有冷却塔静力和极值干扰因子,探讨了新建对既有冷却塔表面平均和脉动风压分布的影响机制,建立了新建和既有冷却塔群极值风压取值模型。研究表明:此类同尺寸新建冷却塔(群)对既有冷却塔群之间的干扰效应显著,具体表现为受扰塔来流向侧前方施扰塔的存在加剧了前后塔间的相互干扰效应,受扰塔与干扰建筑布局形成的“夹道效应”增强了干扰效应,其中以“夹道效应”的不利影响尤为显著,既有塔最大极值干扰因子相比增大了7%;三塔组合最不利工况下其静力干扰因子增大8.7%。Abstract: The extension of the power plant will generate the wind-induced interference effect on the new and existing cooling towers, which is one of the important reasons of the failure and collapse of the cooling towers caused by wind. The current code and existing research completely ignore the extreme value of the wind load of the cooling tower in such cases. Taking the new and existing cooling towers of the same size in a power plant in Qinzhou, Guangxi Province as the object, on the basis of the existing tandem two-tower combination, a total of 240 working conditions of the three-tower and four-tower combination of the new cooling tower were considered. The wind tunnel test for rigid body was used to analyze the average wind pressures and pulsation distribution characteristics of these towers. Then based on the overall coefficient of resistance, the interference effects under different tower group combinations were quantitatively compared and analyzed, the static and extreme interference factors of new and existing cooling towers were proposed, the influence mechanism of new towers on the average and fluctuating wind pressure distribution on the surface of existing cooling towers was discussed, and the model of extreme wind pressures for new and existing cooling tower groups was established. It was found that the interference effect of the new cooling towers (groups) of the same size on the existing cooling tower groups was significant, especially when the towers were located along the wind direction. Also the "sandwich effect" formed by the disturbed towers and the disturbing building enhanced the interference effect most significantly, where the maximum extreme interference factor of the existing towers was increased by 7%, and the static interference factor was increased by 8.7% under the most unfavorable working condition of the three-tower combination.
-
Key words:
- cooling tower /
- tower group combination /
- wind tunnel test /
- interference effect /
- mechanism of action
-
[1] POPE R A. Structural deficiencies of natural draught cooling towers at UK power stations. Part 1: failures at Ferrybridge and Fiddlers Ferry[J]. Structures & Buildings, 1994, 104(1): 1-10. [2] 沈国辉, 王宁博, 楼文娟, 等. 渡桥电厂冷却塔倒塌的塔型因素分析[J]. 工程力学, 2012, 29(8): 123-128. [3] BIERMANN D, HERRNSTEIN W H. The interference between struts in various combinations[R]. Washington D.C.: National Advisory Committee for Aeronautics, 1934. [4] OHYA Y O, OKAJIMA A, HAYASHI M. Wake interference and vortex shedding[G]//CHEREMISINOFF N P. Encyclopedia of fluid mechanics: aerodynamics and compressible flow. Houston, USA: Gulf Publishing Company, 1989: 322-389. [5] SUMNER D. Two circular cylinders in cross-flow: a review[J]. Journal of Fluids and Structures, 2010, 26(6): 849-899. [6] 刘小兵, 姜会民, 王世博, 等. 串列三圆柱的脉动气动力特性试验研究[J]. 振动与冲击, 2021, 40(13): 96-103. [7] 柯世堂, 余文林, 王浩, 等. 复杂山体下双塔布置超大型冷却塔风致干扰效应研究[J]. 实验流体力学, 2018, 32(4): 61-71. [8] 周旋, 牛华伟, 陈政清, 等. 双冷却塔布置与山地环境风干扰作用效应研究[J]. 建筑结构学报, 2014, 35(12): 140-148. [9] 张军锋, 葛耀君, 赵林. 群塔布置对冷却塔整体风荷载和风致响应的不同干扰效应[J]. 工程力学, 2016, 33(8): 15-23,44. [10] 沈国辉, 张坚, 刘显群, 等. 工程常见塔间距下大型冷却塔的双塔干扰效应[J]. 空气动力学学报, 2015, 33(3): 433-439. [11] 柯世堂, 王浩, 余玮. 典型四塔组合特大型冷却塔群风荷载干扰效应[J]. 同济大学学报 (自然科学版), 2017, 45(10): 1421-1428. [12] 余文林, 柯世堂, 杜凌云. 复杂山地环境下四塔组合特大型冷却塔风致干扰效应研究[J]. 振动与冲击, 2017, 36(24): 116-123. [13] 王浩, 柯世堂. 不同四塔组合形式对特大型冷却塔局部非高斯风压分布影响研究[J]. 工程力学, 2018, 35(8): 162-171. [14] 王浩, 柯世堂. 不同四塔组合形式对特大型冷却塔局部风压干扰效应影响研究[J].振动与冲击, 2018, 37(9): 106-113,126. [15] 展艳艳, 赵林, 梁誉文,等. 大型冷却塔群塔组合(六塔双列)风致干扰准则综合评价[J]. 工程力学, 2017, 34(11): 66-76. [16] 于淼, 彭德刚, 李敬生, 等. 基于配筋量准则的冷却塔结构抗风设计[J]. 建筑结构学报, 2020, 41(2): 99-106. [17] 陈翰林, 赵林, 张栋,等. 冷却塔群塔风致干扰脉动风压频谱特性与相关性[J]. 工程力学, 2021, 38(10): 44-53. [18] ZHAO L, CHEN H L, HU X N, et al. Distribution pattern of fluctuating wind pressures on cooling towers in grouped rectangular arrangement[J]. Journal of Wind Engineering Industrial Aerodynamics, 2022, 224, 104975. [19] DU L, KE S T, YANG J, et al. Wind induced interference effect between newly built cooling tower and existing cooling tower[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2020, 37(1): 88-98. [20] 中华人民共和国住房和城乡建设部.建筑结构荷载规范:GB 50009—2012[S]. 北京: 中国建筑工业出版社, 2012. [21] FARELL C, OKTAY G, FEDERICO M. Mean wind loading on rough-walled cooling towers[J]. Journal of the Engineering Mechanics Division, 1976, 102(6): 1059-1081. [22] SUN T F, ZHOU L M. Wind pressure distribution around a ribless hyperbolic cooling tower[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1983, 14(1/2/3): 181-192. [23] 中华人民共和国住房和城乡建设部. 工业循环水冷却设计规范:GB/T 50102—2014 [S]. 北京: 中国计划出版社, 2014. [24] 柯世堂, 赵林, 葛耀君. 大型双曲冷却塔表面脉动风压随机特性:风压极值探讨[J]. 实验流体力学, 2010, 24(4): 7-12. [25] 柯世堂, 徐璐, 朱鹏. 基于大涡模拟超大型冷却塔施工期风荷载时域特性分析[J]. 湖南大学学报(自然科学版), 2018, 45(11): 62-72. 期刊类型引用(1)
1. 胡子萱,卢集富. 软土蠕变本构模型研究综述. 四川建材. 2021(07): 90-91 . 百度学术
其他类型引用(1)
-

计量
- 文章访问数: 17
- HTML全文浏览量: 4
- PDF下载量: 2
- 被引次数: 2