中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预应力碳纤维增强复合材料加固钢梁的耐久性能研究综述

邓军 李俊辉 郭栋

邓军, 李俊辉, 郭栋. 预应力碳纤维增强复合材料加固钢梁的耐久性能研究综述[J]. 工业建筑, 2024, 54(6): 81-90. doi: 10.3724/j.gyjzG24042801
引用本文: 邓军, 李俊辉, 郭栋. 预应力碳纤维增强复合材料加固钢梁的耐久性能研究综述[J]. 工业建筑, 2024, 54(6): 81-90. doi: 10.3724/j.gyjzG24042801
DENG Jun, LI Junhui, GUO Dong. A Review of Durability Research of Notched Steel Beams Reinfoned with Prestressed CFRP[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 81-90. doi: 10.3724/j.gyjzG24042801
Citation: DENG Jun, LI Junhui, GUO Dong. A Review of Durability Research of Notched Steel Beams Reinfoned with Prestressed CFRP[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 81-90. doi: 10.3724/j.gyjzG24042801

预应力碳纤维增强复合材料加固钢梁的耐久性能研究综述

doi: 10.3724/j.gyjzG24042801
基金项目: 

广东省基础与应用基础研究基金项目(2023A1515110542,2023A1515110842,2022A1515012076)

广东省普通高校创新团队项目(21KCXTD030)。

国家自然科学基金(52178278,51778151)

详细信息
    作者简介:

    邓军,博士,教授,博士生导师,主要从事土木工程新材料、结构检测评定和加固、桥梁与隧道施工监控的研究,dengjun@gzhu.edu.cn。

    通讯作者:

    郭栋,博士,博士后,主要从事CFRP加固钢结构的研究,dong.gzhu@gzhu.edu.cn。

A Review of Durability Research of Notched Steel Beams Reinfoned with Prestressed CFRP

  • 摘要: 疲劳损伤是钢桥最常见病害之一,预应力碳纤维增强复合材料(CFRP)能有效抑制裂纹扩展,延长结构服役寿命。预应力CFRP加固钢梁中,CFRP与钢界面作为主要的传力路径,保证了加固后结构的力学和耐久性能。在疲劳和湿热环境作用下,CFRP与钢界面的黏结性能发生劣化,导致加固后结构的力学性能退化。基于已有研究,总结了不同预应力加固系统设计下,钢梁的静载和疲劳性能的测试结果,以及环境因素对结构性能的影响机理。同时整理了预应力CFRP加固受损钢梁的界面主应力和黏结界面的能量释放率公式;并提出疲劳荷载和湿热环境作用下加固钢梁的承载力折减系数和寿命预测方法,以及考虑界面耐久性的结构加固设计思路。
  • [1] 邓军, 汪毅, 李俊辉,等.碳纤维增强复合材料加固钢构件耐久性能研究[M].北京:中国建筑工业出版社,2023.
    [2] WU G, WANG H T, WU Z S, et al. Experimental Study on the Fatigue Behavior of Steel Beams Strengthened with Different Fiber-Reinforced Composite Plates [J]. Journal of Composites for Construction, 2012, 16(2): 127-137.
    [3] YU Q Q, WU Y F. Fatigue strengthening of cracked steel beams with different configurations and materials [J/OL]. Journal of Composites for Construction, 2017, 21(2). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000750.
    [4] YUE Q R, ZHENG Y, CHEN X, et al. Research on fatigue performance of CFRP reinforced steel crane girder [J]. Composite Structures, 2016, 154: 277-285.
    [5] CHEN T, YAO J, LIU R, et al. Fatigue behavior of steel plates with multi-holes repaired by CFRP [J/OL]. Composite Structures, 2020, 242. https://doi.org/10.1016/j.compstruct.2020.112163.
    [6] WANG Z Y, WANG Q Y, LI L, et al. Fatigue behaviour of CFRP strengthened open-hole steel plates [J]. Thin-Walled Structures, 2017, 115: 176-187.
    [7] YU Q Q, ZHAO X L, AL-MAHAIDI R, et al. Tests on cracked steel plates with different damage levels strengthened by CFRP laminates [J/OL]. International Journal of Structural Stability and Dynamics, 2014, 14(6). https://doi.org/10.1016/j.ijfatigue.2020.105914.
    [8] KIM Y J, HARRIES K A. Fatigue behavior of damaged steel beams repaired with CFRP strips [J]. Engineering Structures, 2011, 33(5): 1491-1502.
    [9] COLOMBI P, FAVA G. Experimental study on the fatigue behaviour of cracked steel beams repaired with CFRP plates [J]. Engineering Fracture Mechanics, 2015, 145: 128-142.
    [10] HOSSEINI A, GHAFOORI E, AL-MAHAIDI R, et al. Strengthening of a 19th-century roadway metallic bridge using nonprestressed bonded and prestressed unbonded CFRP plates [J]. Construction and Building Materials, 2019, 209: 240-259.
    [11] GHAFOORI E, MOTAVALLI M, NUSSBAUMER A, et al. Design criterion for fatigue strengthening of riveted beams in a 120-year-old railway metallic bridge using pre-stressed CFRP plates [J]. Composites Part B: Engineering, 2015, 68: 1-13.
    [12] CHATAIGNER S, WAHBEH M, GARCIA-SANCHEZ D, et al. Fatigue strengthening of steel bridges with adhesively bonded CFRP laminates: case study [J/OL]. Journal of Composites for Construction, 2020, 24(3). https://doi.org/10.1061/(ASCE)CC.1943-5614.0001014.
    [13] HEYDARINOURI H, NUSSBAUMER A, MOTAVALLI M, et al. Strengthening of steel connections in a 92-year-old railway bridge using prestressed CFRP rods: Multiaxial fatigue design criterion [J/OL]. Journal of Bridge Engineering, 2021, 26(6). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001714.
    [14] EMDAD R, AL-MAHAIDI R. Effect of prestressed CFRP patches on crack growth of centre-notched steel plates [J]. Composite Structures, 2015, 123: 109-122.
    [15] DENG J, LEE M M K, MOY S S J. Stress analysis of steel beams reinforced with a bonded CFRP plate [J]. Composite Structures, 2004, 65(2): 205-215.
    [16] GHAFOORI E. Interfacial stresses in beams strengthened with bonded prestressed plates [J]. Engineering Structures, 2013, 46: 508-510.
    [17] DENG J, JIA Y H, ZHENG H Z. Theoretical and experimental study on notched steel beams strengthened with CFRP plate [J]. Composite Structures, 2016, 136: 450-459.
    [18] LI J, WANG Y, DENG J, et al. Experimental study on the flexural behaviour of notched steel beams strengthened by prestressed CFRP plate with an end plate anchorage system [J]. Engineering Structures, 2018, 171: 29-39.
    [19] LI S, ZHU T, LU Y, et al. Effect of Temperature Variation on Bond Characteristics between CFRP and Steel Plate [J/OL]. International Journal of Polymer Science, 2016, 2016. https://doi.org/10.1155/2016/5674572.
    [20] KE L, LI C, HE J, et al. Effects of elevated temperatures on mechanical behavior of epoxy adhesives and CFRP-steel hybrid joints [J/OL]. Composite Structures, 2020, 235. https://doi.org/10.1016/j.compstruct.2019.111789.
    [21] GUO D, LIU Y L, GAO W Y, et al. Bond behavior of CFRP-to-steel bonded joints at different service temperatures: Experimental study and FE modeling [J/OL]. Construction and Building Materials, 2023, 362. https://doi.org/10.1016/j.conbuildmat.2022.129836.
    [22] GUO D, WANG H P, LIU Y L, et al. Structural behavior of CFRP-strengthened steel beams at different service temperatures: Experimental study and FE modeling [J/OL]. Engineering Structures, 2023, 293. https://doi.org/10.1016/j.engstruct.2023.116646.
    [23] AROUCHE M M, BUDHE S, ALVES L, et al. Effect of moisture on the adhesion of CFRP-to-steel bonded joints using peel tests [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40: 1-8.
    [24] XIAN G, GUO R, LI C, et al. Mechanical performance evolution and life prediction of prestressed CFRP plate exposed to hygrothermal and freeze-thaw environments [J]. Composite Structures, 2022, 293:1-13.
    [25] BATUWITAGE C, FAWZIA S, THAMBIRATNAM D, et al. Durability of CFRP strengthened steel plate double-strap joints in accelerated corrosion environments [J]. Composite Structures, 2017, 160: 1287-1298.
    [26] REN H, LI S, GAO D. Bond behaviour of CFRP and steel under dry-wet cyclic condition and loading [J]. China Civil Engineering Journal, 2009, 42: 36-41.
    [27] YU Q Q, GAO R X, GU X L, et al. Bond behavior of CFRP-steel double-lap joints exposed to marine atmosphere and fatigue loading [J]. Engineering Structures, 2018, 175: 76-85.
    [28] GHAFOORI E, MOTAVALLI M. Innovative CFRP-prestressing system for strengthening metallic structures [J/OL]. Journal of Composites for Construction, 2015, 19(6). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000559.
    [29] HOSSEINI A, GHAFOORI E, MOTAVALLI M, et al. Flat prestressed unbonded retrofit system for strengthening of existing metallic I-Girders [J]. Composites Part B: Engineering, 2018, 155: 156-172.
    [30] YE H, LI C, PEI S, et al. Fatigue performance analysis of damaged steel beams strengthened with prestressed unbonded CFRP plates [J/OL]. Journal of Bridge Engineering, 2018, 23(7). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001251.
    [31] DENG J, LI J. Durability behaviour of notched steel beam strengthened with prestressed CFRP plate[C]//Springer International Publishing. Lecture Notes in Civil Engineering, 2022.
    [32] YU Q Q, WU Y F. Fatigue strengthening of cracked steel beams with different configurations and materials [J/OL]. Journal of Composites for Construction, 2017, 21(2). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000750.
    [33] GHAFOORI E, MOTAVALLI M. Lateral-torsional buckling of steel I-beams retrofitted by bonded and un-bonded CFRP laminates with different prestress levels: experimental and numerical study [J]. Construction and Building Materials, 2015, 76: 194-206.
    [34] YU Q Q, WU Y F. Fatigue durability of cracked steel beams retrofitted with high-strength materials [J]. Construction and Building Materials, 2017, 155: 1188-1197.
    [35] GUO D, ZHOU H, WANG H P, et al. Effect of temperature variation on the plate-end debonding of FRP-strengthened steel beams: coupled mixed-mode cohesive zone modeling [J/OL]. Engineering Fracture Mechanics, 2022, 270. https://doi.org/10.1016/j.engfracmech.2022.108583.
    [36] HOSSEINI A, GHAFOORI E, MOTAVALLI M, et al. Prestressed unbonded reinforcement system with multiple CFRP plates for fatigue strengthening of steel members [J/OL]. Polymers, 2018, 10(3). https://doi.org/10.3390/polym10030264.
    [37] CHEN T, QI M, GU X L, et al. Flexural strength of carbon fiber reinforced polymer repaired cracked rectangular hollow section steel beams [J/OL]. International Journal of Polymer Science, 2015. https://doi.org/10.1155/2015/204861.
    [38] DENG J, LI J, ZHU M. Fatigue behavior of notched steel beams strengthened by a prestressed CFRP plate subjected to wetting/drying cycles [J/OL]. Composites Part B: Engineering, 2022, 230. https://doi.org/10.1016/j.compositesb.2021.109491.
    [39] GUO D, GAO W Y, LIU Y L, et al. Intermediate crack-induced debonding in CFRP-retrofitted notched steel beams at different service temperatures: experimental test and finite element modeling [J/OL]. Composite Structures, 2023, 304. https://doi.org/10.1016/j.compstruct.2022.116388.
    [40] WANG H T, BIAN Z N, CHEN M S, et al. Flexural strengthening of damaged steel beams with prestressed CFRP plates using a novel prestressing system [J/OL]. Engineering Structures, 2023, 284. https://doi.org/10.1016/j.engstruct.2023.115953.
    [41] CHEN T, GU X L, QI M, et al. Experimental study on fatigue behavior of cracked rectangular hollow-section steel beams repaired with prestressed CFRP plates [J/OL]. Journal of Composites for Construction, 2018, 22(5). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000872.
    [42] WANG Z, XIAN G, ZHAO X L. Effects of hydrothermal aging on carbon fibre/epoxy composites with different interfacial bonding strength [J]. Construction and Building Materials, 2018, 161: 634-648.
    [43] LI J, XIE Y, ZHU M, et al. Degradation mechanism of steel/CFRP plate interface subjected to overloading fatigue and wetting/drying cycles [J/OL]. Thin-Walled Structures, 2022, 179. https://doi.org/10.1016/j.tws.2022.109644.
    [44] XU Q, LI F, MU W, et al. Effect of hygrothermal and alternating load coupled aging on CFRP/Al bonded joints [J/OL]. International Journal of Adhesion and Adhesives, 2021, 109. https://doi.org/10.1016/j.ijadhadh.2021.102912.
    [45] REN X, JIANG L, HE J, et al. Durability of CFRP-steel double-lap joints under cyclic freeze-thaw/wet-dry conditions [J/OL]. Polymers, 2022, 14(17). https://doi.org/10.3390/polym14173445.
    [46] REN X, WANG Y, ZHANG Y, et al. Effect of freeze-thaw/dry-wet environment on mechanical properties of epoxy resin adhesive [J]. Journal of Adhesion Science and Technology, 2023, 37(13): 2046-2068.
    [47] SAMALI B, SHADAN P, SAEED N. Bond degradation at environmentally exposed FRP-strengthened steel elements: state of the art [J/OL]. Composites Part C: Open Access, 2023,12. https://doi.org/10.1016/j.jcomc.2023.100374.
    [48] LI J, DENG J, WANG Y, et al. Experimental study of notched steel beams strengthened with a CFRP plate subjected to overloading fatigue and wetting/drying cycles [J]. Composite Structures, 2019, 209: 634-643.
    [49] LI J, ZHU M, DENG J. Flexural behaviour of notched steel beams strengthened with a prestressed CFRP plate subjected to fatigue damage and wetting/drying cycles [J/OL]. Engineering Structures, 2022, 250. https://doi.org/10.1016/j.engstruct.2021.113430.
    [50] 李俊辉. 湿热环境下预应力 CFRP 加固缺陷钢梁的界面剥离机理及疲劳性能研究 [D]. 广州:广东工业大学, 2020.
    [51] COLOMBI P, FAVA G. Fatigue crack growth in steel beams strengthened by CFRP strips [J]. Theoretical and Applied Fracture Mechanics, 2016, 85: 173-182.
    [52] BOCCIARELLI M, COLOMBI P, D'ANTINO T, et al. Intermediate crack induced debonding in steel beams reinforced with CFRP plates under fatigue loading [J]. Engineering Structures, 2018,171:883-893.
  • 加载中
计量
  • 文章访问数:  110
  • HTML全文浏览量:  13
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-28
  • 网络出版日期:  2024-06-24

目录

    /

    返回文章
    返回