Research Progress on Recycled Aggregate Concrete Structural Components (II): Long-Term Service Performance
-
摘要: 除了关注再生骨料混凝土结构的短期力学性能外,其长期服役性能的稳定性和可靠性同样值得重点关注,这直接关系到结构体系的长期安全稳定。系统地梳理了再生骨料混凝土内钢筋锈蚀、混凝土锈胀开裂、锈蚀钢筋与混凝土之间的黏结性能,以及再生骨料混凝土梁、柱构件长期服役性能等方面的研究进展,并指出了当前科学研究及标准制定过程中的不足之处。分析表明:尽管通过配合比及施工工艺优化等措施促使再生骨料混凝土结构构件的短期力学性能已经与普通混凝土结构构件相差无几,但前者的长期服役性能会出现显著削弱,尤其是在氯盐侵蚀和荷载损伤共同作用的服役环境下。再生骨料取代率对混凝土结构构件长期服役性能的影响不可忽略,因此在进行再生骨料混凝土结构耐久性设计时,必须给予特别考虑。鉴于此,开展再生骨料混凝土结构构件长期服役性能的追踪研究显得尤为必要。通过深入探究其长期服役性能的劣化机理,为再生骨料混凝土结构的标准修订及应用推广提供更为丰富的数据支撑和理论参考,从而实现建筑行业的低碳可持续发展。Abstract: In addition to the short-term mechanical performance of recycled aggregate concrete (RAC) structures, the stability and reliability of long-term service performance are also worthy of special attention, which is directly associated with the long-term safety and stability of such structures. This paper systematically reviewed the research progress in the steel corrosion within RAC, corrosion-induced cracking of RAC, the bonding strength between corroded steel bars and RAC, as well as the long-term service performance of RAC beam and column components. It also pointed out the shortcomings in current scientific research and standard-setting processes. The analysis results indicated that although the short-term mechanical performance of RAC structural components were comparable to those of natural aggregate concrete (NAC) structural components through optimized mix proportion design and construction methods, the long-term service performance of the former was significantly weakened, especially under service conditions of combined chloride attack and loading damage. Furthermore, the influence of recycled aggregate (RA) replacement ratio on the long-term service performance of RAC structural components cannot be ignored, and special considerations are needed in the durability design of such structures. Therefore, it is necessary to carry out follow-up research on the long-term service performance of RAC structural components. Through delving into the deterioration mechanisms underlying their long-term service performance, more abundant data support and theoretical references are provided for the standard revision and application promotion of RAC structures to achieve low-carbon and sustainable development in the construction industry.
-
[1] XIAO J Z, LI W G, FAN Y H, et al. An overview of study on recycled aggregate concrete in China (1996—2011)[J]. Construction and Building Materials, 2012,31:364-383. [2] XIAO J Z, POON C S, ZHAO Y X, et al. Fundamental behavior of recycled aggregate concrete-overview II: durability and enhancement[J]. Magazine of Concrete Research, 2022,74(19):1011-1026. [3] XIAO J Z, POON C S, WANG Y Y, et al. Fundamental behaviour of recycled aggregate concrete-overview I: strength and deformation[J]. Magazine of Concrete Research, 2022,74(19):999-1010. [4] KISKU N, JOSHI H, ANSARI M, et al. A critical review and assessment for usage of recycled aggregate as sustainable construction material[J]. Construction and Building Materials, 2017,131:721-740. [5] LE H B, BUI Q B. Recycled aggregate concretes-A state-of-the-art from the microstructure to the structural performance[J]. Construction and Building Materials, 2020,257,119522. [6] ZHANG H R, XU X, LIU W S, et al. Influence of the moisture states of aggregate recycled from waste concrete on the performance of the prepared recycled aggregate concrete (RAC): a review[J]. Construction and Building Materials, 2022,326,126891. [7] ZHAO Y X, DONG J F, WU Y Y, et al. Steel corrosion and corrosion-induced cracking in recycled aggregate concrete[J]. Corrosion Science, 2014,85:241-250. [8] 张椿民. 再生粗骨料混凝土钢筋锈蚀和锈裂行为研究[D]. 南宁: 广西大学, 2016. [9] 申士军, 张智成, 邢锋, 等. 氯盐侵蚀下再生混凝土氯离子侵蚀和钢筋锈蚀规律研究[J]. 混凝土, 2014(2):18-20, 24. [10] 张鸿儒. 基于界面参数的再生骨料混凝土性能劣化机理及工程应用[D]. 杭州: 浙江大学, 2016. [11] PENG L G, ZHAO Y X, ZHANG H R. Flexural behavior and durability properties of recycled aggregate concrete (RAC) beams subjected to long-term loading and chloride attacks[J]. Construction and Building Materials, 2021,277,122277. [12] WANG J, DU J S. Corrosion characteristics of steel bars embedded in recycled concrete beams under static loads[J]. Journal of Materials in Civil Engineering, 2020,32(9),4020263. [13] 孙平平, 叶良. 再生骨料混凝土内钢筋锈蚀影响因素试验研究[J]. 新型建筑材料, 2013,40(3):19-22. [14] YE T P, CAO W L, ZHANG Y X, et al. Flexural behavior of corroded reinforced recycled aggregate concrete beams[J]. Advances in Materials Science and Engineering, 2018,2018:1-14. [15] LIDE D R. CRC handbook of chemistry and physics[M]. New York: CRC Press, 1999. [16] PAEWCHOMPOO N, YODSUDJAI W C, SUWANVITAYA P, et al. Corrosion-induced cracking time in recycled aggregate concrete (RAC)[J]. Engineering and Applied Science Research, 2020,47(2):145-152. [17] FERNANDEZ I, ETXEBERRIA M, MARÍ A R. Ultimate bond strength assessment of uncorroded and corroded reinforced recycled aggregate concretes[J]. Construction and Building Materials, 2016,111:543-555. [18] 丁杭杰. 混凝土锈裂行为及铁锈填充机理研究[D]. 杭州: 浙江大学, 2015. [19] ZHAO Y X, DONG J F, DING H J, et al. Shape of corrosion-induced cracks in recycled aggregate concrete[J]. Corrosion Science, 2015,98:310-317. [20] 汪裕洲. 考虑锈蚀产物填充-流失行为的混凝土锈裂预测研究[D]. 杭州: 浙江大学, 2022. [21] 杨海峰, 李雪良, 曾健, 等. 钢筋锈蚀后与再生混凝土间黏结滑移性能试验研究[J]. 硅酸盐通报, 2015,34(4):902-908. [22] 丁进炜. 锈蚀钢筋与再生混凝土的黏结性能试验研究[D]. 福州: 福州大学, 2017. [23] 董宏英, 张益轩, 曹万林, 等. 锈蚀钢筋与再生混凝土的黏结性能试验研究[J]. 自然灾害学报, 2017,26(5):10-21. [24] ALHAWAT M, ASHOUR A. Bond strength between corroded steel reinforcement and recycled aggregate concrete[J]. Structures, 2019,19:369-385. [25] ZHAO Y X, LIN H W, WU K, et al. Bond behaviour of normal/recycled concrete and corroded steel bars[J]. Construction and Building Materials, 2013,48:348-359. [26] 叶涛萍, 曹万林, 董宏英, 等. 锈蚀钢筋与高强再生混凝土的黏结性能试验[J]. 哈尔滨工业大学学报, 2018,50(8):132-141. [27] 夏晋. 锈蚀钢筋混凝土构件力学性能研究[D]. 杭州: 浙江大学, 2010. [28] CHOI W C, YUN H D. Long-term deflection and flexural behavior of reinforced concrete beams with recycled aggregate[J]. Materials & Design, 2013,51:742-750. [29] 罗茜. 再生混凝土梁长期性能试验研究[D]. 合肥: 合肥工业大学, 2014. [30] SEARA-PAZ S, GONZÁLEZ-FONTEBOA B, MARTÍNEZ-ABELLA F, et al. Long-term flexural performance of reinforced concrete beams with recycled coarse aggregates[J]. Construction and Building Materials, 2018,176:593-607. [31] SEARA-PAZ S, GONZÁLEZ-FONTEBOA B, MARTÍNEZ-ABELLA F, et al. Deformation recovery of reinforced concrete beams made with recycled coarse aggregates[J]. Engineering Structures, 2022,251,113482. [32] ZHU C, LIU C, BAI G L, et al. Study on long-term performance and flexural stiffness of recycled aggregate concrete beams[J]. Construction and Building Materials, 2020,262,120503. [33] LIU X Y, YU W, HUANG Y, et al. Long-term behaviour of recycled aggregate concrete beams prestressed with carbon fibre-reinforced polymer (CFRP) tendons[J]. Case Studies in Construction Materials, 2023,18,e01785. [34] ZHANG K J, XIAO J Z, ZHANG C Z. Time-dependent flexural capacity analysis of recycled aggregate concrete beams[J]. Engineering Structures, 2020,218,110859. [35] TOŠIĆ N, MARINKOVIĆ S, PECIĆ N, et al. Long-term behaviour of reinforced beams made with natural or recycled aggregate concrete and high-volume fly ash concrete[J]. Construction and Building Materials, 2018,176:344-358. [36] 刘超, 白国良, 尹磊, 等. 长期荷载作用下再生混凝土梁裂缝宽度试验研究[J]. 土木工程学报, 2014,47(1):82-87. [37] 曹万林, 彭世阳, 乔崎云, 等. 钢筋高强再生混凝土足尺梁长期荷载作用下变形性能试验研究[J]. 建筑结构学报, 2017,38(11):142-148. [38] 曹万林, 冯宇, 乔崎云, 等. 长期荷载作用下再生混凝土梁徐变性能试验[J]. 华中科技大学学报(自然科学版), 2018,46(9):127-132. [39] 曹万林, 彭世阳, 乔崎云, 等. 钢筋中强再生混凝土足尺梁徐变性能试验研究[J]. 自然灾害学报, 2017,26(3):1-8. [40] 张鸿儒, 赵羽习, 李智慧. 再生骨料混凝土在某框架结构中的应用及长期应变监测[J]. 建筑结构学报, 2016,37(5):177-184. [41] 曹芙波, 尹润平, 王晨霞, 等. 锈蚀钢筋再生混凝土梁黏结性能及承载力研究[J]. 土木工程学报, 2016(增刊2):14-19. [42] 曹芙波, 丁兵兵, 王晨霞, 等. 锈蚀钢筋再生混凝土梁力学性能试验研究及ANSYS分析[J]. 土木建筑与环境工程, 2015,37(增刊2):35-40. [43] 曹芙波, 王晨霞, 刘龙刚, 等. 锈蚀钢筋再生混凝土梁试验研究及刚度分析[J]. 建筑结构, 2015,45(10):49-55. [44] WANG J, SU H, DU J S, et al. Corrosion-induced cracking of recycled aggregate concrete beams under static load[J]. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 2023,176(10):800-814. [45] ZHANG H R, ZHAO Y X. Performance of recycled concrete beams under sustained loads coupled with chloride ion (Cl-) ingress[J]. Construction and Building Materials, 2016,128:96-107. [46] ZHANG H R, ZHAO Y X. Cracking of reinforced recycled aggregate concrete beams subjected to loads and steel corrosion[J]. Construction and Building Materials, 2019,210:364-379. [47] 曾维来. 再生骨料混凝土结构性能劣化及再生骨料改性工艺研究[D]. 杭州: 浙江大学, 2020. [48] 彭立港. 再生骨料混凝土结构长期性能劣化机理及低碳强化技术[D]. 杭州: 浙江大学, 2024. [49] 刘湖林. 荷载与氯盐环境耦合作用下钢筋再生混凝土大偏压柱受力性能研究[D]. 福州: 福州大学, 2018. [50] 罗素蓉, 刘湖林. 荷载与氯盐作用下再生混凝土大偏压柱受力性能[J]. 水力发电学报, 2018,37(5):35-46. [51] MEI S Q, ZHANG J C, WANG Y F, et al. Creep-recovery of normal strength and high strength concrete[J]. Construction and Building Materials, 2017,156:175-183. [52] RANAIVOMANANA N, MULTON S, TURATSINZE A. Basic creep of concrete under compression, tension and bending[J]. Construction and Building Materials, 2013,38:173-180. [53] 曾维来, 赵羽习. 持续荷载与氯盐侵蚀共同作用下再生粗骨料混凝土柱性能劣化研究[J]. 建筑结构学报, 2020,41(增刊2):252-262.
点击查看大图
计量
- 文章访问数: 40
- HTML全文浏览量: 3
- PDF下载量: 0
- 被引次数: 0