Effects of Tempering Treatment on the Microstructure and Mechanical Properties of High-Strength Weathering Bridge Steel
-
摘要: 为了研究回火处理对不同显微组织高强度耐候桥梁钢组织演变与力学性能的影响,设计不同轧后冷却返红温度,分别获得以板条状贝氏体(Q470钢)及粒状贝氏体(Q550钢)为主的试验钢。利用物理化学相分析法、X射线衍射仪及万能试验机等表征不同温度回火状态下试验钢显微组织与力学性能演变。结果显示:热轧状态下,Q470钢屈服强度及-40 ℃冲击功均高于Q550钢;回火处理后,Q470钢屈服强度随着回火温度的增加先降低后升高 (665~705 MPa),低温冲击功由300 J逐渐下降至220 J;Q550钢屈服强度随着回火温度的增加逐渐升高 (500~650 MPa),低温冲击功未发生明显变化 (210~230 J)。试验钢的主要强化机制是位错强化和细晶强化。500~650 ℃高温回火中Nb析出强化随温度提升逐渐增强,弥补了位错密度下降带来的强度损失,是试验钢屈服强度提升的主要原因。Abstract: Two kinds of weathering bridge steels with lath-like bainite (Q470 steel) and granular bainite (Q550 steel) were prepared by controlling the cooling temperature after hot rolling. The effects of tempering treatment on the microstructure and mechanical properties of these two kinds of steels were investigated. Physical-chemical phase analysis method, X ray diffractometer and universal testing machine were used to characterize the evolution of microstructure and mechanical properties during tempering. The results showed that the yield strength and -40 ℃ impact energy of Q470 steel was higher than that of Q550 steel in hot rolling state. After tempering at 500-650 ℃, the yield strength of Q470 steel decreased first and then increased with the increase of tempering temperature (665-705 MPa), and the -40 ℃ impact energy gradually decreased from 300 J to 220 J. Under the same tempering conditions, the yield strength of Q550 steel increased with the increase of tempering temperature (500-650 MPa), and the -40 ℃ impact energy maintained at 210-230 J. The main strengthening mechanisms of these two kinds of steels were dislocation strengthening and fine grain strengthening. In addition, the strengthening of Nb precipitation gradually increases with increasing tempering temperature, compensating for the strength loss caused by the decrease in dislocation density, which was the main reason for the increase in yield strength of experimental steels.
-
[1] 毛新平,武会宾,汤启波.我国桥梁结构钢的发展与创新[J].现代交通与冶金材料,2021,1(6):1-5. [2] 刘宝喜,高彩茹,郑文超,等.高韧性桥梁钢Q420qD的开发[J].中国冶金,2018,28(2):67-72. [3] 李大赵,索志光,崔天燮,等.采用TMCP技术的低碳低合金高强钢生产的研究现状及进展[J].钢铁研究学报,2016,28(1):1-7. [4] 曹建春,刘清友,雍岐龙,等.铌对高强度低合金钢的组织和强化机制的影响[J].钢铁,2006(8):60-63. [5] XIE Z J, MA X P, SHANG C J,et al.Nano-sized precipitation and properties of a low carbon niobium micro-alloyed bainitic steel[J].Materials Science & Engineering A, 2015, 641(12):37-44. [6] 卜凡征,王学敏,陈琳,等.Ti-Nb-Mo微合金钢回火过程中纳米碳化物的析出行为及组织演变[J].材料热处理学报,2015,36(8):96-103. [7] 崔占斌,王倩,崔占辉,等.控冷返红温度对Q460GJE高建钢组织和力学性能的影响[J].钢铁研究学报,2014,26(11):64-68. [8] 邹航,刘曼,徐光.轧后冷却条件对低碳贝氏体钢组织性能的影响[J].钢铁,2021,56(9):144-150. [9] ZHOU F, LIU L, CHU X, et al. Strengthening mechanism and precipitation behavior of advanced ultrahigh-strength titanium microalloy weathering steels for photovoltaic support[J]. Materials Characterization, 2024, 208, 113660. [10] ZHAO L Y,WANG Q M,SHI G H, et al. The impacts of M/A constituents decomposition and complex precipitation on mechanical properties of highstrength weathering steel subjected to tempering treatment[J]. Journal of Materials Research and Technology, 2023, 23: 2504-2526. [11] LI W, CAI M, WANG D.Studying on tempering transformation and internal friction for low carbon bainitic steel[J].Materials Science and Engineering: A, 2017,679:410-416. [12] CHEN Z, LIN Z, QI J,et al.Microstructures and mechanical properties of a new multi-functional 460 MPa grade construction structural steel[J].Acta Metallurgica Sinica (English Letters), 2022, 35(7):1131-1142. [13] 石俊亮,郑为为,梁兴国.回火温度对铁素体/粒状贝氏体钢显微组织及力学性能的影响[J].材料热处理学报,2019,40(9):107-113. [14] 高古辉,桂晓露,安佰锋,等.终冷温度对Mn系超低碳HSLA钢组织及低温韧性的影响[J].金属学报, 2015, 51(1): 21-30. [15] 李小琳,王昭东.含Nb-Ti低碳微合金钢中纳米碳化物的相间析出行为[J].金属学报, 2015, 51(4): 417-424. [16] 雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社,2006. [17] WANG X, LI Z, ZHOU S,et al.Precipitation behavior of Ti-Nb-V-Mo quaternary microalloyed high strength fire-resistant steel and its influence on mechanical properties[J].Materials Science and Engineering: A, 2021,807,140865. [18] GARCÍA-SESMA L, LÓPEZ B, PEREDA B. Effect of coiling conditions on the strengthening mechanisms of Nb microalloyed steels with high Ti addition levels[J]. Materials Science and Engineering: A, 2019, 748: 386-395. [19] SINGH P P, GHOSH S, MULA S. Strengthening behaviour and failure analysis of hot-rolled Nb+V microalloyed steel processed at various coiling temperatures[J]. Materials Science and Engineering: A, 2022, 859, 144210. [20] 范建文,刘清友,侯豁然,等.超细晶铁素体钢的强度[J].金属热处理,2003(7):5-10. [21] LAN L, QIU C, ZHAO D,et al.Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel[J].Materials Science and Engineering A, 2011, 529:192-200. [22] JIANG Z, LI Y, YANG Z,et al.The tempering behavior of martensite/austenite islands on the mechanical properties of a low alloy Mn-Ni-Mo steel with granular bainite[J].Materials Today Communications, 2021, 26(12),102166. [23] LAN H F, DU L X,et al.Effect of microstructural constituents on strength-toughness combination in a low carbon bainitic steel[J].Materials Science and Engineering: A, 2014,611:194-200. [24] 于庆波.M/A岛对粒状贝氏体钢冲击韧性的影响[J].热加工工艺,2012,41(24):41-42. [25] 万德成,蔡庆伍,余伟,等.超高强贝氏体钢的回火组织与力学性能[J].材料热处理学报, 2013, 34(5): 143-148. [26] 武会宾,尚成嘉,赵运堂,等.回火对低碳贝氏体钢组织稳定性及力学性能的影响[J].钢铁,2005,(3):62-65,82. [27] 周成,赵坦,叶其斌,等.回火温度对1 000 MPa级NiCrMoV低碳合金钢微观组织和低温韧性的影响[J].金属学报,2022,58(12):1557-1569.
点击查看大图
计量
- 文章访问数: 14
- HTML全文浏览量: 1
- PDF下载量: 0
- 被引次数: 0