Research on Mechanical Properties and Constitutive Model of Q355GNH Weathering Steel After Corrosion Damage
-
摘要: 对Q355GNH耐候钢开展了模拟工业海洋大气腐蚀环境乙酸盐雾试验,分析了其耐蚀性能,并通过单调拉伸试验研究腐蚀率对其力学性能指标退化的影响规律,建立了6、14 mm厚度的耐候钢锈损本构关系模型。研究结果表明:腐蚀导致耐候钢强度降低、延伸率减小,其中腐蚀率对断裂应变的影响最大,其次是屈服强度和极限强度,腐蚀后耐候钢屈强比稳定,拉伸断裂形式仍为韧性断裂;钢材厚度越小,腐蚀后钢材承载力下降越明显;随着腐蚀率增加,钢材应力-应变曲线的屈服平台、塑性强化阶段缩短,腐蚀40天后6 mm厚板件的屈服平台消失。基于未腐蚀耐候钢本构关系,通过引入参数k1、k2、k3、C,提出了相应厚度的锈蚀耐候钢本构模型,与试验获得的应力-应变曲线各阶段吻合良好。
-
关键词:
- Q355GNH耐候钢 /
- 耐蚀性能 /
- 本构模型 /
- 力学性能
Abstract: In this study, acetic acid salt spray test was carried out on Q355GNH weathering steel, and its weathering performance in industrial marine atmospheric corrosion environment was analyzed. After the corrosion tests, the monotonic tensile test was carried out to study the degradation trend of the mechanical properties of pre-corroded Q355GNH with the increase of corrosion rate, and the corrosion damage constitutive model of Q355GNH with 6 mm and 14 mm thickness was established. The results showed that the tensile strength and elongation of the weathering steel decreased after corrosion. The corrosion rate had the greatest influence on the fracture strain, followed by the yield strength and ultimate strength; the yield ratio of weathering steel was always stable after corrosion, and the tensile fracture mode was still ductile fracture; the smaller the thickness of steel was, the more obvious the decrease of mechanical properties of steel after corrosion was; with the increase of corrosion time, the constitutive curve of Q355GNH steel changed, the yield platform and plastic strengthening stage gradually became shorter, and the yield platform of 6 mm material specimen disappeared just after 40 days of corrosion. Based on the constitutive model of Q355GNH weathering steel with smooth surface, the constitutive model of pre-corroded weathering steel was proposed by introducing parameters k1, k2, k3, C, which was in good agreement with the constitutive curve of Q355GNH after corrosion. -
[1] 张启富,郝晓东.钢结构腐蚀防护现状和发展[J].中国建筑金属结构,2006(9):22-26. [2] 史炜洲,童乐为,陈以一,等.腐蚀对钢材和钢梁受力性能影响的试验研究[J].建筑结构学报,2012,33(7):53-60. [3] 梁彩凤, 侯文泰. 碳钢、低合金钢16年大气暴露腐蚀研究[J]. 中国腐蚀与防护学报, 2005(1): 2-7. [4] GAO K, LI D, PANG X, et al. Corrosion behaviour of low-carbon bainitic steel under a constant elastic load[J]. Corrosion Science, 2010, 52(10): 3428-3434. [5] 徐善华,王皓,苏磊,等. 考虑点蚀损伤的锈蚀钢板延性退化[J]. 东南大学学报(自然科学版),2016,46(6):1257-1263. [6] 郭晓宇. 耐候钢-UHPC华夫板组合梁抗弯性能及其设计方法研究[D]. 天津:天津大学, 2019. [7] 全国标准化建设委员会. 金属材料 拉伸试验 第1部分:室温试验方法:GB/T 228.1—2021[S]. 北京:中国标准出版社, 2021. [8] 中国钢铁工业协会. 人造气氛腐蚀试验 盐雾试验:GB/T 10125—2021[S]. 北京:中国建筑工业出版社, 2021. [9] 萧以德, 张三平, 曹献龙, 等. 我国大气腐蚀研究进展[J]. 装备环境工程, 2005(5): 8-14. [10] 曹用涛. 金属力学性能测试进展[J]. 冶金分析与测试(冶金物理测试分册), 1983(1): 45-51. [11] 石永久, 王萌, 王元清. 结构钢材循环荷载下的本构模型研究[J]. 工程力学, 2012, 29(9): 92-98,105. [12] 徐善华,王皓,苏磊. 中性盐雾腐蚀环境中Q235钢板力学性能的退化规律[J].机械工程材料,2016,40(5):86-91.
点击查看大图
计量
- 文章访问数: 16
- HTML全文浏览量: 3
- PDF下载量: 0
- 被引次数: 0