Mechanical Properties of Chopped Basalt Fiber-Reinforced Cement-Based Composites
-
摘要: 为研究短切玄武岩纤维增强水泥基复合材料的力学性能,设计并完成了84个抗压试件,72个抗折试件以及140个抗拉试件的基础性能试验,研究了水灰比、纤维掺量、纤维长度以及表面耐碱涂层处理对短切玄武岩纤维增强水泥基复合材料基础力学性能的影响。结果表明:短切玄武岩纤维掺入可以有效提升水泥基复合材料韧性,将抗折和抗拉下的脆性断裂破坏改善为延性裂纹扩展破坏。复合材料抗压强度随短切玄武岩纤维掺量增大和长度降低而降低,纤维长度12 mm且体积掺量2%的试验组28 d抗压强度下降了28.8%;此外短切玄武岩纤维掺入可以显著提升水泥基复合材料的抗折强度以及抗拉强度,纤维长度较小时低掺量对复合材料抗折强度和抗拉强度提升更显著,纤维长度较大时则高掺量更显著,掺入2%体积掺量的12 mm纤维和0.5%体积掺量的6 mm纤维的28 d复合材料抗折强度分别提升了97.6%和41.4%、抗拉强度分别提升了200.7%和230%。Abstract: To study the mechanical properties of chopped basalt fiber-reinforced cement-based composites, 84 compressive specimens, 72 flexural specimens and 140 tensile specimens were designed and tested. The effects of water-cement ratio, fiber content, fiber length and surface alkali resistant coating treatment on the basic mechanical properties of chopped basalt fiber-reinforced cement-based composites were studied. The results showed that the addition of chopped basalt fibers could effectively improve the compressive, flexural and tensile failure modes of cement-based composites. The compressive strength of the composite decreased with the increase of the content of chopped basalt fibers and the decrease of fiber length. The 28 d compressive strength of the experimental group with the fiber length of 12 mm and the volume content of 2% decreased by 28.8%. In addition, the inclusion of chopped basalt fibers could significantly improve the flexural strength and tensile strength of cement-based composites. When the fiber length was small, the low content had a more significant effect on the flexural strength and tensile strength of the composites, and when the fiber length was large, the high content was more significant. The flexural strength and tensile strength of 28 d composites with 2% volume content of 12 mm fibers and 0.5% volume content of 6 mm fibers increased by 97.6% and 41.4%, respectively, and the tensile strength increased by 200.7% and 230%, respectively.
-
[1] 吴中伟.纤维增强:水泥基材料的未来[J].混凝土与水泥制品,1999(1):3-4. [2] 李黎,曹明莉,冯嘉琪.纤维增强水泥基复合材料的纤维混杂效应研究进展[J].应用基础与工程科学学报,2018,26(4):843-853. [3] 慕儒,李辉,王晓伟,等.单向分布钢纤维增强水泥基复合材料(Ⅱ):制备及钢纤维增强作用[J].建筑材料学报,2015,18(3):387-392. [4] 嵇绍华,李永鹏,何锐,等.纤维长度对聚乙烯纤维增强水泥基复合材料强度和韧性的影响[J].混凝土,2014(1):46-48. [5] 程健强,王文广,韩杰.碳纤维增强水泥基复合材料的力学性能研究进展[J].辽宁石油化工大学学报,2021,41(3):34-42. [6] 吴丽丽,王云飞,谢灵慧,等.玻璃纤维增强聚合物复合材料筋与工程水泥基复合材料黏结性能[J].复合材料学报,2020,37(3):696-706. [7] 贾明皓,肖学良,钱坤.玄武岩纤维及其增强水泥基复合材料研究进展[J].硅酸盐通报,2018,37(11):3467-3474. [8] 胡显奇,罗益锋,申屠年.玄武岩连续纤维及其复合材料[J].高科技纤维与应用,2002(2):1-5,11. [9] 李为民,许金余.玄武岩纤维对混凝土的增强和增韧效应[J].硅酸盐学报,2008,(4):476-481,486. [10] RAMAKRISHNAN V, TOLMARE N S, BRIK V B. Performance evaluation of 3-D basalt fiber reinforced concrete and basalt rod reinforced concrete[J]. Engineering, Materials Science,1998(11):34-36. [11] 廉杰, 杨勇新, 杨萌,等. 短切玄武岩纤维增强混凝土力学性能的试验研究[J]. 工业建筑,2007,37(6):8-10. [12] 潘慧敏. 玄武岩纤维混凝土力学性能的试验研究[J]. 硅酸盐通报,2009,28(5):955-958. [13] IYER P, KENNO S Y, DAS S. Mechanical properties of fiber-reinforced concrete made with basalt filament fibers[J]. Journal of Material in Civil Engineering, 2015,27(11): 1-8. [14] 吴钊贤, 袁海庆, 卢哲安, 等. 玄武岩纤维混凝土力学性能试验研究[J]. 混凝土,2009(9):67-68,78. [15] 江朝华,赵晖,张玮,等.玄武岩纤维对水泥砂浆性能及水泥石微观结构的影响[J].材料科学与工程学报,2008(5):765-769. [16] 江朝华, 赵辉, 陈达, 等. 玄武岩纤维及聚丙烯纤维对水泥砂浆性能影响的对比分析[J]. 硅酸盐通报,2007,26(6):1085-1088. [17] 叶邦土, 蒋金洋, 王文灏, 等. 矿物掺和料对玄武岩纤维水泥砂浆强度发展的影响[J]. 建筑材料学报,2014,17(3):521-525. [18] 褚明生, 陈袆. 玄武岩纤维水泥砂浆的力学性能研究[J]. 现代交通技术,2008,5(5):18-20. [19] 杨建林, 王来贵, 潘纪伟, 等.玄武岩纤维增强水泥砂浆的拉破坏试验研究[J]. 硅酸盐通报,2016,35(2):536-542. [20] 中华人民共和国建设部. 建筑砂浆基本性能试验方法标准:JGJ/T 70—2009[S]. 北京: 中国建筑工业出版社,2009. [21] 国家市场监督管理局. 水泥胶砂强度检验方法(ISO法):GB/T 17671—2021[S]. 北京: 中国建筑工业出版社,2022.
点击查看大图
计量
- 文章访问数: 48
- HTML全文浏览量: 4
- PDF下载量: 4
- 被引次数: 0