Simulations of Wood Viscoelastic Acoustic Emission Propagation Behavior and Wave Velocity Estimation Based on COMSOL Software
-
摘要: 为了研究木材黏弹性特征对声发射(AE)信号传播行为的影响,在 COMSOL 软件中通过设定木材的黏度系数建立木材试件的有限元仿真模型,并结合木材 AE 试验结果验证了仿真模型的有效性。首先,在杉木试件表面距离左端面 100 mm 处通过信号发生器产生 Hanning 窗调制正弦脉冲信号,并在试件表面距离左端面 300 mm 处以 200 mm 间距放置 2 个 AE 传感器采集 AE 信号,再采用滤波器将传感器采集到的 AE 信号进行去噪处理。其次,对杉木试件进行有限元模拟,得到弹性波在试件中传播的位移云图和在黏弹性材料中的传播规律。最后,通过到达时间差法(Time Difference of Arrival,TDOA)对模拟仿真与试验测量得到的横纵波速度以及时域波形图进行对比。结果表明,模拟仿真 所 得 横 纵 波 速 度 分 别 为 1 118 m / s 和 5 245 m / s, 试 验 所 得 横 纵 波 速 度 分 别 为1 290 m / s 和 5 209 m / s。将仿真模拟波形信号图与试验实测波形图进行对比,其幅值衰减与信号时域波形图都较为吻合。因此,证实了黏弹特性对杉木试件的影响以及仿真模型的有效性。Abstract: In order to study the influence of wood viscoelasticity characteristics on the propagation behavior of acoustic emission (AE) signals, a finite element simulation model of wood specimens was established by setting the viscosity coefficients of wood in COMSOL software. The effectiveness of the simulation model was verified by combining the results of wood AE experiments. Firstly, a Hanning window modulated sine pulse signal was generated by a signal generator at a distance of 100 mm from the left end face on the surface of the fir specimen. Two AE sensors were placed at a distance of 200 mm from the left end face at a distance of 300 mm on the surface of the specimen to collect the AE signals. Then, a filter was used to denoise the AE signals collected by the sensors. Secondly, finite element simulations were conducted on the fir specimen to obtain the displacement cloud map of elastic wave propagation in the specimen and the propagation law in viscoelastic materials. Finally, the time difference of arrival (TDOA) method was used to compare the transverse and longitudinal wave velocities and time-domain waveforms obtained from the simulations and experimental measurements. The results showed that the simulated transverse and longitudinal wave velocities were 1 118 m/s and 5 245 m/s, and the experimental transverse and longitudinal wave velocities were 1 290 m/s and 5 209 m/s, respectively. The amplitude attenuation and the time-domain waveforms were in good agreement when comparing the simulated and measured waveforms with the experimental waveforms. Therefore, the effects of viscoelasticity on Chinese fir specimens and the validity of the simulation model were confirmed.
-
Key words:
- wood /
- acoustic emission /
- finite element analysis /
- propagation speed /
- viscoelasticity
-
[1] 邢雪峰, 李善明, 周永东, 等. 声发射技术在木质材料损伤监测中的应用研究进展 [J]. 世界林业研究, 2022, 35(6): 63-68. [2] 杨瑞峰, 马铁华. 声发射技术研究及应用进展 [J]. 中北大学学报(自然科学版), 2006 (5): 456-461. [3] RESCALVO F J, RODRíGUEZ M, BRAVO R, et al. Acoustic emission and numerical analysis of pine beams retrofitted with FRP and poplar wood [J]. Materials, 2020, 13(2): 435-447. [4] SANABRIA S J, FURRER R, NEUENSCHWANDER J, et al. Analytical modeling, finite-difference simulation and experimental validation of air-coupled ultrasound beam refraction and damping through timber laminates, with application to non-destructive testing [J]. Ultrasonics, 2015, 63: 65-85. [5] 孙建平, 王逢瑚, 胡英成. 基于声发射和神经网络的木材受力损伤过程检测 [J]. 仪器仪表学报, 2011, 32(2): 342-347. [6] 张晓萌, 余观夏, 许为凤, 等. 激光超声在木材无损检测中的仿真研究 [J]. Applied Physics, 2018, 8(11): 480-488. [7] TALLAVO F, CASCANTE G, PANDEY M D. Experimental verification of an orthotropic finite element model for numerical simulations of ultrasonic testing of wood poles [J]. European Journal of Wood and Wood Products, 2017, 75: 543-551. [8] SOLANKI S,BARUAH B, TIWARI P.Modeling and simulation of wood pyrolysis process using COMSOL Multiphysics[J]. Bioresource Technology Reports,2022,17,100941. [9] ZAHEDI M, KAZEMI NAJAFI S, FVSSL J, et al. Determining elastic constants of poplar wood (Populus deltoides) by ultrasonic waves and its application in the finite element analysis [J]. Wood Material Science & Engineering, 2022, 17(6): 668-678. [10] 张鑫明, 李萍, 李玮, 等. 奥氏体不锈钢应力腐蚀微裂纹的非线性表面波检测 [J]. 无损检测, 2021, 43(10): 5-11. [11] 陈丹, 肖会芳, 黎敏, 等. 金属材料内部非金属夹杂超声检测的数值模拟 [J]. 工程科学学报, 2015, 37(7): 942-949. [12] 杨慧, 顾菊平, 华亮, 等. 基于小波的声发射信号去噪研究 [J]. 现代电子技术, 2017, 40(13): 70-72,76. [13] 徐业守, 徐赵东, 葛腾, 等. 黏弹性材料等效分数阶微观结构标准线性固体模型 [J]. 力学学报, 2017, 49(5): 1059-1069. [14] 徐赵东, 周云, 周福霖. 粘弹性阻尼器三种计算模型的对比与分析 [J]. 华南建设学院西院学报, 1999 (2): 1-7. [15] 江梦策, 孙磊, 杨进京, 等. 粘弹性阻尼器的计算模型模拟分析 [J]. 科技信息(科学教研), 2008 (20): 393,428. [16] 孙业志, 熊正明, 周健. 黏弹性散体介质中波的传播和耗散 [J]. 南方冶金学院学报, 2003 (1): 1-6. [17] 伏喜斌. 压力容器焊缝超声TOFD检测的COMSOL模拟 [J]. 无损检测, 2018, 40(7): 9-14. [18] ZERWER A, CASCANTE G, HUTCHINSON J. Parameter estimation in finite element simulations of Rayleigh waves [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(3): 250-261. [19] MOSER F, JACOBS L J, QU J. Modeling elastic wave propagation in waveguides with the finite element method [J]. NDT & E International, 1999, 32(4): 225-234. [20] 梁轩, 杜建镔. 采用减震榫桥梁非线性动力学分析计算方法 [J]. 工程力学, 2016, 33(4): 136-143. [21] NYQUIST H. Certain topics in telegraph transmission theory [J]. Transactions of the American Institute of Electrical Engineers, 1928, 47(2): 617-644. [22] 杨光. 粘弹性材料的激光超声无损检测应用研究 [J]. 计算机时代, 2022 (10): 55-59.
点击查看大图
计量
- 文章访问数: 6
- HTML全文浏览量: 2
- PDF下载量: 0
- 被引次数: 0