| [1] |
LI V C,WANG S X,WU C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite(ECC)[J]. ACI Materials Journal,2001,98(6):483-492.
|
| [2] |
WU R X,ZHAO T J,TIAN L,et al. Influence of silica fume and thermal damage on uniaxial tension performance of PVC-SHCC[J]. Applied Mechanics& Materials,2013,357-360:977-981.
|
| [3] |
ZHANG X F,XU S L. Ductility evaluation of reinforced UHTCC structural members[J]. Advanced Materials Research,2010,150-151:229-234.
|
| [4] |
Japan Society of Civil Engineers. Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks(HPFRCC)[S]. Tokyo:JSCE,2008.
|
| [5] |
陕西省住房和城乡建设厅. 高延性混凝土应用技术规程:DBJ 61/T 112—2016[S]. 西安:陕西省建筑标准设计办公室,2016.
|
| [6] |
廖桥,余江滔,黄永强,等. 超高延性混凝土无筋拱静力和抗冲击性能研究[J]. 建筑结构,2023,53(24):21-28.
|
| [7] |
张伟,贺晶晶,胡炜,等. 高延性混凝土加固砌块砌体墙抗震性能试验及承载力研究[J]. 工程力学,2024,41:1-13.
|
| [8] |
张华鹏. 高延性混凝土(ECC)力学性能与加固隧道研究[D]. 重庆:重庆交通大学,2024.
|
| [9] |
邓明科,雷恒,张雨顺,等. 纤维织物增强高延性混凝土加固RC短柱抗剪性能试验研究[J]. 湖南大学学报(自然科学版),2024,51(1):79-89.
|
| [10] |
EMARA M,SALEM M A,MOHAMED H A,et al. Shear strengthening of reinforced concrete beams using engineered cementitious composites and carbon fiber-reinforced polymer sheets[J]. Fibers,2023,11(11). DOI:10.3390/fib11110098.
|
| [11] |
LIU D,QIN F,DI J,et al. Flexural behavior of reinforced concrete(RC)beams strengthened with carbon fiber reinforced polymer(CFRP)and ECC[J]. Case Studies in Construction Materials,2023,19,e02270.
|
| [12] |
寇佳亮,樊明艳,孙国兴,等. 高延性混凝土加固震损古旧砌体抗震性能试验及恢复力模型研究[J]. 振动与冲击,2022,41(7):106-115,125.
|
| [13] |
赵丹丹. HDC加固混凝土短柱小偏心受压损伤性能试验研究及数值模拟[D]. 西安:西安理工大学,2023.
|
| [14] |
宋诗飞,邓明科,张阳玺. 纤维网格-高延性混凝土加固预制空心板抗弯性能试验研究[J/OL]. 工程力学,2023:1-13[ 2023-10-19]. http://kns.cnki.net/kcms/detail/11.2595.O3.20231019.1418.003.html.
|
| [15] |
郭晓潞,李寅雪,袁淑婷. 水泥生命周期评价及其低环境负荷研究进展[J]. 建筑材料学报,2023,26(6):660-669.
|
| [16] |
李化建. 煤矸石的综合利用[M]. 北京:化学工业出版社,2010.
|
| [17] |
牛晓燕,王海,安明磊,等. 煤矸石粗骨料对混凝土力学性能的影响[J]. 混凝土,2023(1):68-72.
|
| [18] |
杨彪,姚贤华,何双华,等. 煤矸石粗骨料混凝土力学及耐久性能的研究进展[J]. 工业建筑,2023,53(1):212-222.
|
| [19] |
白国良,刘瀚卿,王建文,等. 基于骨料特性差异的煤矸石混凝土干燥收缩模型[J]. 土木工程学报,2023,56(11):27-42.
|
| [20] |
刘瀚卿,白国良,王建文,等. 煤矸石混凝土单轴受压应力-应变曲线试验研究[J]. 建筑结构学报,2023,44(7):236-245.
|
| [21] |
SYMONS K. Embodied Carbon:The Inventory of Carbon and Energy(ICE). A BSRIA Guide[J]. Proceedings of the Institution of Civil Engineers,2011,164(EN 4):206. DOI:10.1680/ENER.2011.164.4.206.
|
| [22] |
KUA H W,MAGHIMAI M. Steel-versus-concrete debate revisited:global warming potential and embodied energy analyses based on attributional and consequential life cycle perspectives[J]. Journal of Industrial Ecology,2017,21(1):82-100.
|
| [23] |
SAZEDJ S,MORAIS A J,JALALI S. Comparison of embodied energy and carbon dioxide emissions of brick and concrete based on functional units[J]. Physical Review,2002,65(7):133-136.
|
| [24] |
中华人民共和国交通运输部. 公路工程水泥及水泥混凝土试验规程:JTG 3420—2020[S]. 北京:人民交通出版社股份有限公司,2016.
|
| [25] |
中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准:GB/T 50081—2019[S]. 北京:中国建筑工业出版社,2019.
|
| [26] |
中国工程建设协会. 纤维混凝土试验方法:CECS 13 ∶2009[S]. 北京:中国计划出版社,2009.
|
| [27] |
张继旺,黄满锋,苏仕参,等. 高强珊瑚混凝土(HSCC)单轴受压性能试验研究[J]. 硅酸盐通报,2022,41(7):2275-2282,2291.
|
| [28] |
魏慧,吴涛,杨雪,等. 纤维增韧轻骨料混凝土单轴受压应力-应变全曲线试验研究[J]. 工程力学,2019,36(7):126-135,173.
|
| [29] |
刘瑞江,张业旺,闻崇炜,等. 正交试验设计和分析方法研究[J]. 实验技术与管理,2010,27(9):52-55.
|
| [30] |
YANG E H,SAHMARAN M,YANG Y Z,et al. Rheological control in production of engineered cementitious composites[J]. ACI Materials Journal,2009,106(4):357-366.
|
| [31] |
ZHANG Z G,YUVARAJ A,DI J,et al. Matrix design of light weight,high strength,high ductility ECC[J]. Construction and Building Materials,2019,210:188-197.
|
| [32] |
王冲,高淑玲. 基于正交试验设计的PVA-ECC基体组分对其力学性能影响的显著性水平研究[J]. 混凝土,2018(11):52-55.
|
| [33] |
COMMITTEE A. Standard test method for flexural toughness and first-crack strength of fiber reinforced concrete(using beam with third-point loading):ASTM C1018-97[S]. West Conshohocken:ASTM International,1997.
|
| [34] |
伍勇华,于浩,邓明科,等. 高延性混凝土弯曲性能的尺寸效应[J]. 硅酸盐通报,2018,37(4):1167-1173.
|
| [35] |
徐世烺,蔡向荣. 超高韧性纤维增强水泥基复合材料基本力学性能[J]. 水利学报,2009,40(9):1055-1063.
|
| [36] |
LI V C. Engineered cementitious composites(ECC):bendable concrete for sustainable and resilient infrastructure[M]. Berlin:Springer,2019.
|
| [37] |
CHOI W C,YUN H D,KANG J W,et al. Development of recycled strain-hardening cement-based composite(SHCC)for sustainable infrastructures[J]. Composites Part B,2012,43(2):627-635.
|
| [38] |
YU J,WU H L,LEUNG C K Y. Feasibility of using ultrahigh-volume limestone-calcined clay blend to develop sustainable medium-strength engineered cementitious composites(ECC)[J]. Journal of Cleaner Production,2020,262:343-354.
|
| [39] |
KEOLEIAN G A,KENDALL A,DETTLING J E,et al. Life cycle modeling of concrete bridge design:comparison of engineered cementitious composite link slabs and conventional steel expansion joints[J]. Journal of Infrastructure Systems,2012,11(1):51-60.
|
| [40] |
苏慈,田晓霞,曾田胜. C60高性能钢纤维混凝土制备和应用[J]. 混凝土,2009,11(4):120-122.
|
| [41] |
WANG S,LI V C. Engineered cementitious composites with high-volume fly ash[J]. ACI Materials Journal,2007,104(3):233-241.
|
| [42] |
YANG E H,YANG Y Z,LI V C. Use of high volumes of fly ash to improve ECC mechanical properties and material greenness[J]. ACI Materials Journal,2007,104(6):620-628.
|
| [43] |
YU R,SPIESZ P,BROUWERS H J H. Mix design and properties assessment of ultra-high performance fibre reinforced concrete(UHPFRC)[J]. Cement and Concrete Research,2014,56:29-39.
|
| [44] |
ZHANG Z G,YANG F,LIU J C,et al. Eco-friendly high strength,high ductility engineered cementitious composites(ECC)with substitution of fly ash by rice husk ash[J]. Cement and Concrete Research,2020,137:1-15.
|