Research on Mechanical Properties of GFRP Tube Confined Biochar Concrete Under Axial Compression
-
摘要: 生物炭可作为一种轻骨料,部分掺入混凝土中可有效提供内固化及填充效应,成为一种潜在的碳捕捉和封存技术,但由于生物炭高孔隙率的微观结构,导致生物炭混凝土存在强度低、耐腐蚀性差及稳定性差等问题。本研究提出采用玻璃纤维增强复合材料(GFRP)管约束生物炭混凝土,开展GFRP管约束生物炭混凝土的轴压性能试验研究,设计参数主要包括:GFRP管的厚度(层数)、生物炭掺量及生物炭吸水率,着重分析各试件的轴向应力-应变曲线、环向应变-轴向应变曲线、屈服应力、极限应变及环向断裂应变等指标。研究结果表明:在相同生物炭掺量及吸水率的前提下,GFRP管约束生物炭混凝土试件的极限抗压强度相对于未约束试件可提升490.4%~563.3%,约束试件的极限应变也大幅提升,且约束试件屈服应力、应变远远大于未约束试件的屈服应力、应变,说明GFRP管的约束有效提高了生物炭混凝土的强度及变形能力;随着生物炭掺量的增加,约束试件的屈服应力降低,但轴向极限应变增大;而生物炭吸水率的增加则导致约束试件的屈服荷载提高,但极限应变减小;GFRP管的层数增加,使得GFRP管约束生物炭混凝土的二次刚度提升,其环向应变-轴向应变曲线弹性段和二次刚度段无明显过渡点,说明GFRP管与生物炭混凝土协同工作性能良好。Abstract: Biochar can be served as a lightweight aggregate material and its partial incorporation into concrete can realize internal curing and filling effects, thereby enhancing the mechanical properties of cementitious materials. It represents a potential carbon capture and sequestration technique. However, due to the high porosity of biochar’s microstructure, biochar concrete faces challenges such as low strength, poor corrosion resistance, and instability. This study proposed the use of Glass Fiber Reinforced Polymer (GFRP) tubes to confine biochar concrete, and the axial compression tests on GFRP tube-confined biochar concrete were performed, with design parameters including GFRP tube thickness (number of layers), biochar content, and biochar water absorption rate. Emphasis was placed on analyzing the axial stress-strain curves, circumferential strain-axial strain curves, yielding stress, ultimate strain, and circumferential fracture strain of each specimen. The results indicated that, under the premise of same biochar content and water absorption rate, the ultimate compressive strength of GFRP-confined biochar concrete specimens increased by 490.4% to 563.3% compared to that of unconfined specimens. The ultimate strain of confined specimens also significantly increased, and the yielding stress and strain of the confined specimens were much greater then those of unconfined specimens, indicating that GFRP confinement significantly improves the bearing capacity and deformation performance of biochar concrete. With increasing biochar content, the peak stress of confined specimens decreased while the axial ultimate strain increased. On the other hand, an increase in biochar water absorption rate led to an increase in the yielding load of confined specimens but a decrease in the ultimate strain. Additionally, an increase in the number of layers of GFRP tubes enhanced the secondary stiffness of confined specimens. The circumferential strain-axial strain curve exhibited no obvious transition point between the elastic segment and the linear segment, indicating that three was a good synergy between FRP tubes and biochar concrete.
-
[1] 吴维, 卢玉南, 覃英宏, 等. 生物炭混凝土生命周期CO2排放评价[J]. 建筑科学与工程学报, 2023, 40(3): 20-29. [2] ANDRES R J, MARLAND G, FUNG I, et al. A 1°×1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950—1990[J]. Global Biogeochemical Cycles, 1996, 10(3):419-429. [3] 齐冬有, 张标, 罗宁. 水泥工业碳减排的技术路径[EB/OL].(2021-06-08) [2023-03-29]. https://www.ccement.com/news/content/13050268544005001.html. [4] 马忠诚, 汪澜. 水泥工业CO2减排及利用技术进展[J]. 材料导报, 2011,25(19):150-154. [5] SCRIVENER K L, JOHN V M, GARTNER E M. Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry[J]. Cement and Concrete Research, 2018, 114:2-26. [6] HIGUCHI T, MORIOKA M, YOSHIOKA I, et al. Development of a new ecological concrete with CO2 emissions below zero[J]. Construction and Building Materials, 2014, 67: 338-343. [7] 李金文, 顾凯, 唐朝生, 等. 生物炭对土体物理化学性质影响的研究进展[J]. 浙江大学学报(工学版), 2018, 52(1): 192-206. [8] AKHTAR A, SARMAH A K. Novel biochar-concrete composites: manufacturing, characterization and evaluation of the mechanical properties[J]. Science of the Total Environment, 2018, 616-617: 408-416. [9] GUPTA S, KUA H W. Factors determining the potential of biochar as a carbon capturing and sequestering construction material: critical review[J]. Journal of Materials in Civil Engineering, 2017, 29(9), 04017086. [10] 窦雅芬. FRP约束生物炭骨料混凝土轴压力学性能研究[D]. 西安: 西安建筑科技大学, 2023. [11] KÖROĞLU M A, CEYLAN M, ARSLAN M H, et al. Estimation of flexural capacity of quadrilateral FRP-confined RC columns using combined artificial neural network[J]. Engineering Structures, 2012, 42:23-32. [12] WU Y F, JIANG J F. Effective strain of FRP for confined circular concrete columns[J]. Composite Structures, 2013, 95(1): 479-491. [13] MONTI G, NISTICO N. Square and rectangular concrete columns confined by CFRP: Experimental and numerical investigation[J]. Mechanics of Composite Materials, 2008, 44: 289-308. [14] MIRMIRAN A, SHAHAWY M. A new concrete-filled hollow FRP composite column[J]. Composites Part B Engineering, 1996, 27(3/4): 263-268. [15] MIRMIRAN A, SHAHAWY M. Closure to "behavior of concrete columns confined by fiber composites" by amir mirmiran and mohsen shahawy[J]. Journal of Structural Engineering, 1998, 124(9): 1095-1095. [16] SAAFI M, TOUTANJI H A, LI Z. Behavior of concrete columns confined with fiber reinforced polymer tubes[J]. ACI Structural Journal, 1999, 96(4): 500-509. [17] SAMAAN M, MIRMIRAN A, SHAHAWY M. Model of concrete confined by fiber composites[J]. Journal of Structural Engineering, 1998, 124(9): 1025-1031. [18] 中华人民共和国住房和城乡建设部.普通混凝土用砂、石质量及检验方法标准: JGJ 52—2006[S].北京:中国建筑工业出版社, 2006. [19] 叶扬天. 生物质烘焙特型及动力学研究[D].南京:南京师范大学, 2019. [20] 敬登虎, 曹双寅. FRP约束混凝土极限状态下破坏机理分析[J]. 特种结构, 2007(2): 93-95. [21] 毛志杰, 黄靓, 吴越, 等. 纤维增强复合材料约束尾矿粉地聚物再生混凝土轴压性能研究[J]. 工业建筑, 2023, 53(6): 209-217. [22] FENG P, CHENG S, BAI Y, et al. Mechanical behavior of concrete-filled square steel tube with FRP-confined concrete core subjected to axial compression[J]. Composite Structures, 2015, 123: 312-24. [23] LAM L, TENG J. Design-oriented stress-strain model for FRP-confined concrete[J]. Construction and Building Materials, 2003, 17: 471-489. [24] NISTICO N, PALLINI F, ROUSAKIS T, et al. Peak strength and ultimate strain prediction for FRP confined square and circular concrete sections[J]. Composites Part B, 2014, 67(12): 543-554. [25] MIRMIRAN A, SINGHVI A, MONTI G. FRP-confined concrete model[J]. Journal of Composites for Construction, 1999, 3(1): 62-65. [26] JIANG T, TENG J G. Analysis-oriented stress-strain models for FRP-confined concrete[J]. Engineering Structures, 2007, 29(11): 2968-2986. [27] RICHART F E, BRANDTZG A, BROWN R L. Failure of plain and spirally reinforced concrete in compression[J/OL]. Engineering, Materials Science, 1929. https://api.semanticscholar.org/CorpusID:136940705. [28] SAMAAN, MIRMIRAN A, SHAHAWY M. Model of concrete confined by fiber composites[J]. Journal of Structural Engineering, 1998, 124 (9): 1025-1031. [29] TOUTANJI H A. Stress-strain characteristics of concrete columns externally confined with advanced fiber-composite sheets[J]. ACI Materials Journal, 1999,96 (3): 397-404. [30] XIAO Y, WU H. Compressive behavior of concrete confined by carbon fiber composite jackets[J]. Journal of Materials in Civil Engineering, 2000(2): 12:139-146. [31] MANDER J A B, PRIESTLEY M J N.Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8): 1804-1826. [32] 吴刚, 吕志涛. FRP约束混凝土圆柱无软化段时的应力-应变关系研究[J]. 建筑结构学报, 2003(5): 1-9. [33] FARDIS M N. KHALILI H H. FRP-encased concrctc as a structural material[J]. Magazine of Concrete Research, 1982,34(121): 191-202. [34] MORAN D A, PANTELIDES C P. Damage-based stress-strain model for fiber-reinforced polymer-confined concrete[J]. Journal of Composites for Construction, 2005, 6(4): 233-240. [35] MARQUES S P C, MARQUES D C S C, LINS DA SILVA J, et al. Model for analysis of short columns of concrete confined by fiber-reinforced polymer[J]. Journal of Composites for Construction, 2004, 8(4): 332-340.
点击查看大图
计量
- 文章访问数: 51
- HTML全文浏览量: 4
- PDF下载量: 3
- 被引次数: 0