Research and Applications of FRP in Large-Diameter Shield Tunnel Engineering
-
摘要: 大直径盾构隧道是建设长大穿海穿江隧道的主要建设形式,具有安全、经济、高效、智能化高等优点。纤维增强复合材料(FRP)具有轻质高强、耐腐蚀、抗疲劳及可设计等优点,在地下复杂服役环境条件下FRP可替代钢材以解决其存在的工程问题。首先,从FRP在深基坑支护结构、在基坑地下连续墙、盾构隧道内部结构以及在泥浆环流管道等4个典型大直径盾构隧道施工分部分项工程方面,介绍了国内外典型的FRP研究和应用范例,结果表明FRP力学性能和服役性能均满足地下基坑支护、盾构隧道等结构的应用要求。针对研发现状及当下应用存在的问题,对FRP在地下工程结构中的应用前景做出展望。Abstract: Large diameter shield tunnel is the main construction form of long and large tunnels that cross sea and river, which has the advantages of safety, economy, efficiency, and intelligence. Fiber Reinforced Polymer (FRP) possess the advantages of light weight, high strength, corrosion resistance, fatigue resistance and design-ability, which can be used to replace steel to address engineering problems in complex underground service environments. The research and applications of FRP at home and abroad were presented from four typical projects of large-diameter shield tunnel construction, such as deep foundation excavation supporting structure, underground diaphragm wall, shield tunnel internal structure, and mud circulation pipe. The results showed that the mechanical and service properties of FRP could meet the requirements in the application of underground foundation excavation supportings, shield tunnels and other structures. Finally, the application of FRP materials in the underground engineering structures was prospected according to the research and application states and current problems of FRP.
-
[1] 余行健.玄武岩纤维复合筋材在基坑支护桩中的应用[D]. 成都:西南交通大学, 2017. [2] 苏毅,李婷,周明敏,等.纤维混凝土-U型钢支架巷道组合支护结构研究[J]. 采矿技术, 2019, 19(6): 47-52. [3] 毕远志,陈季斌,张大林,等.喷射纤维混凝土在深井地下空间支护应用关键技术[J]. 东南大学学报(自然科学版), 2010, 40(增刊2): 229-234. [4] 陈爽,梁淑嘉,关纪文.FRP筋/珊瑚混凝土柱轴心受压承载力[J].复合材料学报, 2021,38(10):3519-3530. [5] 高华硕. 新型FRP筋混凝土柱的偏压性能与计算方法研究[D].哈尔滨:哈尔滨工业大学,2021. [6] HANY J, ANTONIO N. Design of RC columns using glass FRP reinforcement[J]. Journal of Composites for Construction, 2013, 17(3): 294-304. [7] ZHANG J, ZHANG Q, XIAO J. Durability of FRP bars and FRP bar reinforced seawater sea sand concrete structures in marine environments[J]. Construction and Building Materials, 2022, 350,128898. [8] 董志强. FRP筋增强混凝土结构耐久性能及其设计方法研究[D].南京:东南大学,2018. [9] SCHMIDT J W, ANDERS B, BJÖRN T, et al. Mechanical anchorage of FRP tendons:a literature review [J]. Construction and Building Materials, 2012, 32: 110-121. [10] 曾宪明,陈肇元,王靖涛,等.锚固类结构安全性与耐久性问题探讨[J]. 岩石力学与工程学报,2004(13):2235-2242. [11] MATOS T, PORTELLA K, HENKE S, et al. Analysis of anchor rod failure in a guyedtransmission tower: Influence of microstructures and corrosion mechanisms [J]. Engineering Failure Analysis, 2021, 121(4),105166. [12] ECHAABI J, TROCHU F, GAUVIN R. Review of failure criteria of fibrous composite materials[J]. Polymer Composites, 1996, 17(6):786-798. [13] 金俊华.预应力锚杆(索)在高速公路边坡防护中的应用[J]. 科技资讯,2010(16):117. [14] 李国维,高磊,黄志怀,等.全长黏结玻璃纤维增强聚合物锚杆破坏机制拉拔模型试验[J]. 岩石力学与工程学报,2007(8):1653-1663. [15] EZZELDIN Y S, NIGEL G S. A new steel anchorage systemfor post tensioning application using carbon fiber reinforced plastictendons[J]. Canadian Journal of Civil Engineering, 1998, 25(1):113-127. [16] ALMALLAH A, SADEGHIAN P, NAGGAR H E. Enhancing the interface friction between glass fiber-reinforced polymer sheets and sandy soils through sand coating[J]. Geomechanics and Geoengineering, 2020, 15(3): 186-202. [17] DE LORENZIS L, TENG J G. Near-surface mounted FRP reinforcement: An emerging technique for strengthening structures[J]. Composites Part B: Engineering, 2007, 38(2): 119-143. [18] BENMOKRANE B, ZHANG B, CHENNOUF A, et al.Evaluation of aramid and carbon fibre reinforced polymer composite tendons for prestressed ground anchors [J]. Canadian Journal of Civil Engineering, 2000, 27(5):1031-1045. [19] ROBERT M, BENMOKRANE B. Combined effects of saline solution and moist concrete on long-term durability of GFRP reinforcing bars[J]. Construction and Building Materials, 2013, 38:274-284. [20] 薛伟辰,康清梁.纤维塑料筋粘结锚固性能的试验研究[J]. 工业建筑,1999,29(12):5-7. [21] 李国维,余亮,吴玉财,等.预应力喷砂玻璃纤维聚合物锚杆的黏结损伤[J]. 岩石力学与工程学报,2014,33(8):1711-1719. [22] 郑伟锋,刘慧芬,宋肖冰,等.深中通道西人工岛玻璃纤维锚杆边坡支护应用研究[J]. 建筑科学,2020,36(增刊1):130-136. [23] 陈超,徐东升,徐学勇,等.玻璃纤维锚杆在基坑支护中的应力分布规律[J].科学技术与工程,2020,20(32):13394-13401. [24] 陈立道,朱雪岩.城市地下空间规划理论与实践[M].上海:同济大学出版社,1997:107-119. [25] KLAUS P, HAEHNIG F, GLVCKERT J. Deep diaphragm wall activities at randstad rail project in rotterdam, the netherlands[J]. The Journal of the Deep Foundations Institute, 2007, 11: 19-27. [26] SZOLOMICKI J, HANNA G S. The marina bay sands complex in singapore: a modern marvel of structure and technology[C]//IOP Conference Series: Materials Science and Engineering. Prague: 2020. [27] FABIO M, NANNI A. Structural response of FRP reinforced concrete softeyes for tunnel excavation[C]//Sixth conference of Case Histories in Geotechnical Engineering. Arlington:2008. [28] 王德林. 玻璃纤维筋在地铁盾构施工中的应用分析[J]. 设备管理与维修,2021(2):141-142. [29] 朱继红. GFRP筋在地下连续墙的应用[J]. 土工基础,2007(3):10-12. [30] 郭翼民. 玻璃纤维筋在地铁工程盾构穿越围护结构中的应用[J]. 建筑施工,2018,40(3):398-400. [31] 蒋小锐. 玻璃纤维筋在地下连续墙中的应用[J]. 铁道标准设计,2009(10):48-50. [32] 邹铭. 玻璃纤维筋在百米级地下连续墙中的应用[J]. 建筑施工,2021,43(5):794-796. [33] 李飞, 钟志全. 泥水盾构始发穿越玻璃纤维筋围护结构的优化工艺[J]. 建筑机械化,2011,32(4):64-66. [34] MOHAMED H M, ALI A H, HADHOOD A, et al. Testing, design, and field implementation of GFRP RC soft-eyes for tunnel construction[J]. Tunnelling and Underground Space Technology,2020, 106, 103626. [35] CARATELLI A, MEDA A, RINALDI Z, et al. Precast tunnel segments with GFRP reinforcement[J]. Tunnelling Underground Space Technology,2016,60:10-20. [36] HOSSEINI S M, MOUSA S, MOHAMED H M, et al. Experimental and analytical study on precast high-strength concrete tunnel lining segments reinforced with GFRP bars[J]. Journal of Composites for Construction,2022,26(5),04022062. [37] 杨楷楠.生物质FRP复合材料层合板的抗疲劳性能及盾构隧道管片的应用研究[D]. 哈尔滨:东北林业大学,2023. [38] 毕经龙, 程实. 钢-FRP复合约束混凝土隧道衬砌管片力学性能试验研究[J]. 复合材料科学与工程,2023(5):71-79. [39] 霍润科, 李曙光, 杜丽辉,等. 碳纤维筋加固隧道衬砌效果模拟及施工工艺探讨[J]. 长江科学院院报,2018,35(11):69-75. [40] 张稳军, 张高乐, 雷华阳. 基于塑性损伤的盾构隧道FRP-Key接头抗剪性能及布置方式合理性研究[J]. 中国公路学报,2017,30(8):38-48. [41] GHASSAN A F, MAHDI E, ELIYAN F F. The use of fiber reinforced polymeric composites in pipelines: A review[J]. Composite Structures, 2021,276, 114595. [42] ANTONIO N, NORRIS M S, BRADFORD N M. Lateral confinement of concrete using FRP reinforcement[J]. Special Publication, 1993, 138: 193-210. [43] LEE L S, ESTRADA H, BAUMERT M. Time-dependent reliability analysis of FRP rehabilitated pipes[J]. Journal of Composites for Construction 2010, 14(3): 272-279. [44] 张小婧.碳纤维加固技术在城市给排水管道中的应用研究[J]. 工程技术研究,2023,8(20):78-80. [45] 王苏岩,李海涛.FRP加固钢筋混凝土管道试验研究[J]. 工程抗震与加固改造,2010,32(5):52-56. [46] 陈尚建,刘逸敏,杨金华,等.纤维复合材料在管道防渗、堵漏、补强加固工程中的应用[J]. 中国农村水利水电,2005(5): 49-50. [47] 刘鲁闽,高建岭,张宏涛.管道加固碳纤维复合材料耐久性能研究[C]//北京力学学会第18届学术年会论文集. 北京:2012. [48] 卢亦焱,周婷,易越磊,等.碳纤维布加固混凝土内压管道承载力计算方法研究[J]. 武汉大学学报(工学版),2003(6):51-55.
点击查看大图
计量
- 文章访问数: 85
- HTML全文浏览量: 5
- PDF下载量: 4
- 被引次数: 0