Experimental Study on Disintegration of Strongly Weathered Granular Granite Cemented by MICP in the Seawater Environment
-
摘要: 采用微生物诱导碳酸钙沉淀(MICP)注浆技术加固散体状强风化花岗岩,并分析胶结液溶剂、胶结液浓度和注浆次数等因素在海水环境下对MICP胶结强风化花岗岩试样物理力学性能和崩解特性的影响。结果表明:当海水作为胶结液溶剂时,试样加固效果好于淡水试样,其无侧限抗压强度、碳酸钙含量、干密度和抗崩解性能均高于用淡水作为胶结液溶剂的试样。随着胶结液浓度的增大,试样的无侧限抗压强度、碳酸钙含量、干密度呈现先增加后降低的趋势,而试样的最终崩解率呈现先降低后增加的趋势,海水和淡水试样的最优胶结液浓度均为0.75 mol/L。在最优胶结液浓度下,加固试样的无侧限抗压强度、碳酸钙含量和干密度随注浆次数的增加而增大,而最终崩解率则逐渐降低;4次灌浆后,海水试样最高无侧限抗压强度可达9.38 MPa,崩解率仅为1.5%。
-
关键词:
- 散体状强风化花岗岩 /
- 微生物诱导碳酸钙沉淀 /
- 胶结 /
- 崩解率 /
- 碳酸钙含量
Abstract: The Microbially Induced Calcite Precipitation (MICP) grouting technique was conducted to cement strongly weathered granular granite, and the influence on physical and mechanical properties and disintegration characteristics of specimens after being cemented with different cementing solvents, cementitious concentrations, and rounds of grouting cycles in the seawater environment was analyzed. The results showed the physical and mechanical properties and disintegration resistance of the strongly weathered granular granite were distinctly improved after being cured by MICP; meanwhile, when seawater was used as cementing solvents, the cementitious effect for specimens was better than that in freshwater, and its unconfined compressive strength, calcium carbonate content, dry density and disintegration resistance were higher than those in freshwater. In addition, with the increase in the cementitions concentration, unconfined compressive strength, calcium carbonate content and dry density of specimens tended to first increasing and then decreasing, simultaneously, the final disintegration ratios of specimens tended to first decreasing and then increasing. The optimum cementitious concentration was 0.75 mol/L. The calcium carbonate content and unconfined compressive strength of cured specimens increased with the increase in rounds of grouting cycles and the final disintegration ratios were gradually decreased in the optimum cementitious concentration solution; the maximum value of unconfined compressive strength of specimens after 4 rounds of grouting cycles was up to 9.38 MPa, and the disintegration ratio was only 1.5%. -
[1] DEJONG J T, MORTENSEN B M, MARTINEZ B C, et al. Bio-mediated soil improvement[J]. Ecological Engineering, 2010, 36(2): 197-210. [2] KAROL R H. Chemical grouting and soil stabilization[M]. Boca Raton: CRC Press, 2003. [3] 张健,李术才,李召峰,等.全风化花岗岩地层单-双液浆加固试验研究[J]. 中南大学学报(自然科学版),2018,49(12):3051-3059. [4] 刘汉龙,肖鹏,肖杨,等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文),2019,41(1):1-14. [5] DHAMI N K, REDDY M S, MUKHERJEE A. Biomineralization of calcium carbonates and their engineered applications: a review[J/OL]. Frontiers in Microbiology, 2013, 4[2024-03-18].https://doi.org/10.3389/fmicb.2013.00314. [6] 何稼,楚剑,刘汉龙,等. 微生物岩土技术的研究进展[J]. 岩土工程学报,2016,38(4):643-653. [7] 程晓辉,麻强,杨钻,等. 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报,2013,35(8):1486-1495. [8] DEJONG J T, MORTENSEN B M, MARTINEZ B C, et al. Bio-mediated soil improvement[J]. Ecological Engineering, 2010, 36(2): 197-210. [9] 李明东,Li L,张振东,等. 微生物矿化碳酸钙改良土体的进展、展望与工程应用技术设计[J]. 土木工程学报, 2016,49(10):80-87. [10] 刘忠,肖水明,刘飞飞,等. 微生物诱导碳酸钙沉积胶结建筑渣土抗风蚀扬尘影响因素的试验研究[J]. 工业建筑,2022,52(11):71-78. [11] 林文彬,程晓辉,由爽,等. 微生物注浆加固沙漠风积砂试验研究[J/OL]. 工程力学,2023,41[2024-03-18]. https://kns-cnkinet.webvpn.fjut.edu.cn/kcms/detail/11.2595.O3.20231016.1147.008.html. [12] 钱春香,王安辉,王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学,2015,36(6):1537-1548. [13] 程晓辉,杨钻,李萌,等. 岩土材料微生物改性的基本方法综述[J]. 工业建筑,2015,45(7):1-7. [14] WANG Y N, LI S K, LI Z Y, et al. Exploring the application of the MICP technique for the suppression of erosion in granite residual soil in Shantou using a rainfall erosion simulator[J]. Acta Geotechnica, 2023, 18(6): 3273-3285. [15] SOON N W, LEE L M, KHUN T C, et al. Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation[J/OL]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(5) [2024-03-18]. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001089. [16] LIANG S H, XIAO X L, FANG C X, et al. Experimental study on the mechanical properties and disintegration resistance of microbially solidified granite residual soil[J/OL]. Crystals, 2022, 12(2) [2024-03-18]. https://doi.org/10.3390/cryst12020132. [17] REN X W, ZHAO Y, DENG Q L, et al. A relation of hydraulic conductivity-void ratio for soils based on Kozeny-Carman equation[J]. Engineering Geology, 2016, 213: 89-97. [18] SUN Y S, TUO Y, LV J G, et al. Influence of different particle size and rock block proportion on microbial-solidified soil-rock mixture[J/OL]. Applied Sciences, 2023, 13(3) [2024-03-18].https://doi.org/10.3390/app13031325. [19] 许万强,林文彬,罗承浩,等. MICP技术研究进展及在海洋岩土工程的应用展望[J]. 福建工程学院学报,2022,20(6):511-519. [20] 梁仕华,牛九格,房采杏,等. 微生物胶结砂土的研究进展[J]. 工业建筑,2018,48(7):1-9,15. [21] CHENG L, SHAHIN M A, CORD-RUWISCH R. Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments[J]. Géotechnique, 2014, 64(12): 1010-1013. [22] PENG J, CAO T C, HE J, et al. Improvement of coral sand with MICP using various calcium sources in sea water environment[J/OL]. Frontiers in Physics, 2022, 10[2024-03-18]. https://doi.org/10.3389/fphy.2022.825409. [23] WANG Z Y, YU W Y, QI C A, et al. Reaction mechanism and influencing factors of MICP in seawater environment[J]. Journal of Civil and Environment Engineering, 2022, 44: 128-135. [24] LIN W B, GAO Y P, LIN W, et al. Seawater-based bio-cementation of natural sea sand via microbially induced carbonate precipitation[J/OL]. Environmental Technology & Innovation, 2023, 29[2024-03-18]. https://doi.org/10.1016/j.eti.2023.103010. [25] 杨司盟,彭劼,温智力,等.浓缩海水作为钙源在微生物诱导碳酸钙加固砂土中的应用[J].岩土力学,2021,42(3):746-754. [26] YU X N, RONG H. Seawater based MICP cements two/one-phase cemented sand blocks[J/OL]. Applied Ocean Research, 2022, 118[2024-03-18]. https://doi.org/10.1016/j.apor.2021.102972 Get rights and content. [27] HARKES M P, VAN PAASSEN L A, BOOSTER J L, et al. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement[J]. Ecological Engineering, 2010, 36(2): 112-117. [28] 巨之通. 不同材料改良黄土的抗剪强度和崩解特性研究[D]. 西安:长安大学, 2022. [29] MARTIN K K, KHODADADI T H, KAVAZANJIAN JR E. Enzyme-induced carbonate precipitation: scale-up of bio-cemented soil columns[C]//Geo-Congress 2020. Reston: American Society of Civil Engineers, 2020: 96-103. [30] 范楠楠,李彦荣. 不同水环境下含根马兰黄土的崩解性初探[J]. 中国农村水利水电,2021(3):6-12. [31] LIN W B,LIN W,CHENG X H, et al. Microbially induced desaturation and carbonate precipitation through denitrification: a review[J/OL]. Applied Sciences, 2021, 11(17) [2024-03-18]. https://doi.org/10.3390/app11177842. [32] 许鹏旭,温智力,杨司盟,等. 不同颗粒尺寸条件下MICP胶结砂土的试验研究[J]. 高校地质学报,2021,27(6):738-745. [33] 李昊,唐朝生,刘博,等. 模拟海水环境下MICP胶结钙质砂的力学特性[J]. 岩土工程学报,2020,42(10):1931-1939. [34] 董博文,刘士雨,俞缙,等. 基于微生物诱导碳酸钙沉淀的天然海水加固钙质砂效果评价[J]. 岩土力学,2021,42(4):1104-1114. [35] 谢约翰,唐朝生,尹黎阳,等. 纤维加筋微生物胶结砂土的力学特性[J]. 岩土工程学报,2019,41(4):675-682.
点击查看大图
计量
- 文章访问数: 79
- HTML全文浏览量: 12
- PDF下载量: 6
- 被引次数: 0