Advances in Research and Development,Preparation,and Welding Technique of Weathering Bridge Steel
-
摘要: 耐候桥梁钢具备无需涂装即可应用于桥梁钢结构的优势,降低了钢结构的初始涂装费用和后期维护成本,避免了涂装过程对环境的负面影响。这种钢材具有强度高、耐蚀性优良以及对环境友好的特性。由于耐候桥梁钢在成分和使用方式上与常规钢种存在显著差异,国内外学者针对其展开了广泛研究。对近年来国内外关于耐候钢研发、制备与焊接技术的研究成果进行了梳理,包括各元素及环境对耐候钢耐蚀性影响的研究、耐候钢制备技术的开发、耐候钢力学性能与腐蚀疲劳的研究、耐候钢焊接工艺的开发以及耐候钢结构使用寿命的预测等方面。在此基础上,提出了针对我国实际应用场景,对耐候钢的设计、制造和焊接技术进行优化的建议,并对未来的研究工作进行了展望。Abstract: Weathering bridge steel has the advantage of being applied to bridge steel structures without the need for painting, reducing the initial painting and later maintenance costs of steel structures, and avoiding the negative impact of the painting process on the environment. This type of steel has high strength, excellent corrosion resistance, and environmentally friendly characteristics. Due to significant differences in composition and usage between weathering bridge steel and conventional steel, scholars at home and abroad have conducted extensive research on it. The paper summarized the research results on the research and development, preparation, and welding technique of weathering steel at home and abroad in recent years, including the study of the influence of various elements and environments on the corrosion resistance of weathering steel, the development of weathering steel preparation technique, the study of mechanical properties and corrosion fatigue of weathering steel, the development of weathering steel welding process, and the prediction of the service life of weathering steel structures. On this basis, suggestions were put forward for optimizing the design, manufacturing, and welding technique of weathering steel for practical application scenarios in China, and future research work was discussed.
-
[1] 柯伟. 中国腐蚀调查报告[M]. 北京: 化学工业出版社, 2003. [2] 孙澜曦,白玉星. 钢结构防腐方法研究 [J]. 全面腐蚀控制, 2020, 34 (5): 75-78. [3] KOGLER R.Steel bridge design handbook: corrosion protection of steel bridges[M].Washington D C: Federal Highway Administration,2012. [4] YAMAGUCHI E,NAKAMURA S,HIROKADO K,et al.Performance of weathering steel in bridges in kyushu-yamaguchi region[J].Doboku Gakkai Ronbunshuu A,2006,62(2): 243-254. [5] DOLLING C N, HUDSON R M. Weathering steel bridges[J]. Bridge Engineering, 2003, 156(1): 39-44. [6] 张宇,郑凯锋,衡俊霖. 免涂装耐候钢桥梁腐蚀设计方法现状及展望 [J]. 钢结构, 2018, 33 (9): 116-121,52. [7] LARRABEE C P. Corrosion resistence of high-strength low-alloy steels as infulenced by compsition and environment[J]. Corrosion, 1953, 9(8): 259-271. [8] BUCK D M .Copper in steel-the influence on corrosion[J]. Journal of Industrial & Engineering Chemistry, 1913, 5(6):447-452. [9] 叶永健,陈素文. 耐候钢的研究与应用[C]//2015中国钢结构行业大会论文集. 上海:2015. [10] 曲晓敏. 免涂装耐候桥梁钢用耐候焊材焊接接头的组织和力学性能研究[D]. 秦皇岛:燕山大学, 2018. [11] COPSON H R. Long-time atmospheric corrosion tests on low-alloy steels[C]//Proc. ASTM. 1960, 60: 1-16. [12] LARRABEE C P. Corrosion resistance of high-strength low-alloy steels as influenced by composition and environment[J]. Corrosion, 1953, 9(8): 259-271. [13] 陈开利. 日本耐候钢桥梁技术的研究发展动向 [J]. 世界桥梁, 2020, 48 (1): 47-52. [14] 郑凯锋,张宇,衡俊霖,等. 高强度耐候钢及其在桥梁中的应用与前景 [J]. 哈尔滨工业大学学报, 2020, 52(3): 1-10. [15] 田志强,孙力,刘建磊,等. 国内外耐候桥梁钢的发展现状 [J]. 河北冶金, 2019(2): 11-13,25. [16] 黄涛. 耐候钢在南海海洋大气环境下的腐蚀行为研究[D]. 北京:钢铁研究总院, 2018. [17] 翟晓亮,袁远. 我国耐候钢桥发展及展望 [J]. 钢结构(中英文), 2019, 34 (11): 69-74,80. [18] 周昊,李萍,杨王辉. 耐候钢在国内外的发展、应用与前景 [J]. 山东冶金, 2018, 40 (6): 21-24. [19] 王春生,张静雯,段兰,等. 长寿命高性能耐候钢桥研究进展与工程应用 [J]. 交通运输工程学报, 2020, 20(1): 1-26. [20] 谢曼,干勇,王慧.面向2035的新材料强国战略研究[J].中国工程科学,2020,22(5):1-9. [21] 陈新华. 合金元素对经济耐候钢大气腐蚀协同抑制作用[D]. 沈阳:中国科学院金属研究所,2007. [22] 刘晓翠,张转转,刘锟,等. Cu、Cr、Ni元素对高强耐候钢腐蚀稳定性的影响 [J]. 轧钢, 2019, 36 (6): 17-21. [23] 黄涛,陈小平,王向东,等. 高强耐候钢在NaCl溶液中的腐蚀锈层特征和耐腐蚀性研究 [J]. 机械工程学报, 2017, 53 (20): 45-53. [24] STRATMANN M, BOHNENKAMP K, RAMCHANDRAN T. The influence of copper upon the atmospheric corrosion of iron[J]. Corrosion Science, 1987, 27(9): 905-926. [25] WU W, DAI Z, LIU Z, et al. Synergy of Cu and Sb to enhance the resistance of 3% Ni weathering steel to marine atmospheric corrosion[J]. Corrosion Science, 2021, 183,109353. [26] LIU W, LIU J, PAN H, et al. Synergisic effect of Mn, Cu, P with Cr content on the corrosion behavior of weathering steel as a train under the simulated industrial atmosphere[J]. Journal of Alloys and Compounds, 2020, 834,155095. [27] 程鹏,黄先球,庞涛,等. 耐候桥梁钢的研究现状与发展趋势 [J]. 材料保护, 2020, 53 (7): 142-146. [28] CHENG Y F, BULLERWELL J, STEWARD F R. Electrochemical investigation of the corrosion behavior of chromium-modified carbon steels in water[J]. Electrochimica Acta, 2003, 48(11): 1521-1530. [29] 张飘飘,杨忠民,陈颖,等. 含铬耐候钢在模拟海洋大气环境中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2017, 37 (2): 93-100. [30] YANG X, YANG Y, SUN M, et al. A new understanding of the effect of Cr on the corrosion resistance evolution of weathering steel based on big data technology[J]. Journal of Materials Science & Technology, 2022, 104: 67-80. [31] WU W, CHENG X, ZHAO J, et al. Benefit of the corrosion product film formed on a new weathering steel containing 3% nickel under marine atmosphere in Maldives[J]. Corrosion Science, 2020, 165,108416. [32] 刘芮,陈小平,王向东,等. Ni对耐候钢在模拟海洋大气环境下耐蚀性的影响 [J]. 腐蚀科学与防护技术, 2016, 28 (2): 122-128. [33] CHENG X, JIN Z, LIU M, et al. Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres[J]. Corrosion Science, 2017, 115: 135-142. [34] 肖晓明,彭云,田志凌.铬、钼对耐候钢熔敷金属耐蚀性能和力学性能的影响[J].焊接学报,2014,35(6):44-48,115. [35] 张烈.Mo对Q420级耐候桥梁钢大气腐蚀性能的影响[D].秦皇岛:燕山大学,2019. [36] 孙瑞.Si对Q420qENH钢耐大气腐蚀性能的影响[D].秦皇岛:燕山大学,2020. [37] 周学俊,黄峰,王晶晶,等.镍铜质量比和硅含量对海洋环境用耐候钢电化学腐蚀行为的影响[J].腐蚀与防护,2016,37(10):789-792,860. [38] 张起生.Si对碳钢耐大气腐蚀性能影响的研究[D].大连:大连理工大学,2006. [39] 葛秋辰,汪兵,李远征,等. Sn对耐候钢高湿热海洋大气环境下耐蚀性能的影响 [J]. 金属热处理, 2017, 42 (2): 67-71. [40] 汪川,曹公旺,潘辰,等. 碳钢、耐候钢在3种典型大气环境中的腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2016, 36 (1): 39-46. [41] 朱劲松,郭晓宇,亢景付,等. 耐候桥梁钢腐蚀力学行为研究及其应用进展 [J]. 中国公路学报, 2019, 32 (5): 1-16. [42] MORCILLO M, CHICO B, DÍAZ I, et al. Atmospheric corrosion data of weathering steels: a review[J]. Corrosion Science, 2013, 77: 6-24. [43] MORCILLO M, DÍAZ I, CANO H, et al. Atmospheric corrosion of weathering steels. Overview for engineers. Part I: Basic concepts[J]. Construction and Building Materials, 2019, 213: 723-737. [44] 潘雪新,姜海昌,付鸿,等. 区域性气候条件下低合金高强耐候钢的初期腐蚀行为研究 [J]. 腐蚀科学与防护技术, 2017, 29(4): 356-362. [45] 葛兆军,张强,黄耀,等. 输电铁塔耐候钢在不同大气环境下的腐蚀行为 [J]. 中国电力, 2016, 49(12):8-14. [46] FAN Y, LIU W, LI S, et al. Evolution of rust layers on carbon steel and weathering steel in high humidity and heat marine atmospheric corrosion[J]. Journal of Materials Science & Technology, 2020, 39: 190-199. [47] 陈新彦,陈大明,陈旭,等. 热带海洋大气环境中耐候钢腐蚀特征与机理的研究 [J]. 腐蚀科学与防护技术, 2018, 30 (2): 150-156. [48] 刘雨薇,赵洪涛,王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为 [J]. 金属学报, 2020, 56 (9): 1247-1254. [49] 夏昕鸣,邢路阔,宋泓清,等. 模拟南海大气环境下耐候钢腐蚀性能研究 [J]. 装备环境工程, 2018, 15 (3): 39-44. [50] 韩北方,高红星,秦延庆.Q355NHD耐候H型钢生产实践[J].工业技术创新,2016,3(6):1107-1109. [51] 孟祥亮,张振兴,张学.耐候钢S355J2W的轧制工艺优化[J].信息记录材料,2017,18(9):37-38. [52] 唐百晓.轧制工艺对建筑用耐候钢显微组织的影响[J].热加工工艺,2020,49(3):113-115. [53] 张杰. 高强耐候钢的生产工艺与组织性能研究[D].唐山:华北理工大学,2020. [54] 王春生,段兰,郑丽,等.桥梁高性能钢 HPS485W 疲劳裂纹扩展速率试验研究[J].工程力学,2013,30(6):212-216. [55] KAYSER C R,SWANSONJA,LINZELLDG.Characterization of material properties of HPS-485W (70W) TMCP for bridge girder applications[J].Journal of Bridge Engineering,2006,11(1):99-108. [56] ALBRECHT P, SIDANI M. Fatigue of eight-year weathered A588 steel stiffeners in salt water[J]. Journal of Structural Engineering, 1989, 115(7): 1756-1767. [57] 梁健宇. 锈后免涂装耐候钢疲劳性能试验研究[D]. 杭州:浙江大学,2018. [58] 梁健宇,姚谏,张玉玲.免涂装耐候钢腐蚀后的疲劳试验研究[J].工业建筑,2018,48(11):149-153,174. [59] 刘华松.高强度耐候钢的焊接[J].机车车辆工艺,2006(6):10-12. [60] 卓晓,安同邦,马成勇. 420 MPa级耐候桥梁钢用焊材熔敷金属强韧化规律 [J]. 钢铁, 2020, 55 (4): 88-94. [61] 王凤会,高立军,张熹,等. 不同耐候指数焊丝对Q420qENH焊接接头冲击及腐蚀性能的影响 [J]. 电焊机, 2017, 47 (1): 44-47. [62] DEEPAK J R, RAJA V K B, ARPUTHABALAN J J, et al. Experimental investigation of corten A588 filler rod for welding weathering steel[J]. Materials Today: Proceedings, 2019, 16: 1233-1238. [63] 谢旭,吴向阳,张志毅,等. 焊接工艺对SMA490BW耐候钢接头腐蚀行为的影响 [J]. 表面技术, 2018, 47 (10): 256-261. [64] 肖晓明,彭云,马成勇,等. 热输入对3Cr耐候钢MAG焊缝金属组织和性能的影响 [J]. 焊接学报, 2017, 38 (6): 41-46,131. [65] 武永寿,梁景恒,韩晓辉,等. 高强度耐候钢Q355对接接头多次焊修力学行为研究 [J]. 兵器材料科学与工程, 2020, 43(1): 87-91. [66] KAWAKUBO T, NAGIRA T, USHIODA K, et al. Friction stir welding of high phosphorus weathering steel:weldabilities, microstructural evolution and mechanical properties[J]. ISIJ International, 2021, 61(7): 2150-2158. [67] 卢峰华,许鸿吉,郭伟,等.S355J2W+N耐候钢焊接接头的组织和力学性能[J].热加工工艺,2012,41(5):137-139. [68] 刘博维. S355J2W耐候钢焊接接头组织及性能研究[D]. 北京:北京交通大学,2012. [69] 张励忠,刘博维,张淘,等. S355J2W耐候钢焊接接头显微组织与力学性能[J].北京交通大学学报,2012,36(4):127-130,134. [70] 武永寿,张志毅,何永攀,等. SMA490BW耐候钢接头组织及低温力学性能研究[J]. 热加工工艺, 2016, 45(13): 51-54. [71] 屈朝霞,李自刚.高强耐候钢焊接接头性能研究[J].宝钢技术,2005(增刊1):69-73. [72] 黄宸,黄峰,张宇,等. 高强耐候钢焊接接头电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39 (6): 527-535. [73] 黄宸,黄峰,刘静,等. A710高强耐候钢焊接接头耐蚀性分析 [J]. 武汉科技大学学报, 2017, 40(5): 351-356. [74] 崔坤强,吴向阳,张志毅,等. SMA490BW耐候钢及其焊接接头的盐雾腐蚀行为 [J]. 热加工工艺, 2018, 47(13): 68-71. [75] 褚冰纯.后丁香大桥钢箱梁工地焊接质量控制[J].北方交通,2014(3):66-68. [76] 徐向军,高建忠,刘洪武,等.Q345qENH耐候桥梁钢在官厅水库公路特大桥上的应用技术[J].金属加工(热加工),2021(3):34-40. [77] 戴胜勇,,陈克坚,张志勇,等.铁路无涂装耐候钢桥梁关键技术及应用示范[J].铁道工程学报,2023,40(6):57-61. [78] 徐向军,刘洪武,常国光,等.高强度耐候桥梁钢焊接工艺研究[J].金属加工(热加工),2023(11):68-78. [79] 苏瀚.腐蚀作用下耐候钢桥疲劳寿命评估方法研究[D].北京:北京交通大学,2020. [80] AHN J H, JEONG Y S, KIM I T, et al. A method for estimating time-dependent corrosion depth of carbon and weathering steel using an atmospheric corrosion monitor sensor[J]. Sensors, 2019, 19(6),1416. [81] 凌广.耐候钢在川藏公路某大跨径桥梁设计中的应用[J].公路,2022,67(6):154-158.
点击查看大图
计量
- 文章访问数: 9
- HTML全文浏览量: 1
- PDF下载量: 0
- 被引次数: 0