中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于响应面法的聚乙烯醇纤维超高性能混凝土(UHPC)配合比优化设计及微观结构研究

赖光洪 孙政和 廖飞宇 陈宇峰 张思雅

赖光洪, 孙政和, 廖飞宇, 陈宇峰, 张思雅. 基于响应面法的聚乙烯醇纤维超高性能混凝土(UHPC)配合比优化设计及微观结构研究[J]. 工业建筑, 2024, 54(11): 87-94. doi: 10.3724/j.gyjzG24022808
引用本文: 赖光洪, 孙政和, 廖飞宇, 陈宇峰, 张思雅. 基于响应面法的聚乙烯醇纤维超高性能混凝土(UHPC)配合比优化设计及微观结构研究[J]. 工业建筑, 2024, 54(11): 87-94. doi: 10.3724/j.gyjzG24022808
LAI Guanghong, SUN Zhenghe, LIAO Feiyu, CHEN Yufeng, ZHANG Siya. Mix Proportion Optimization Design and Microstructure Study of UHPC Containing Polyvinyl Alcohol Fibers Based on Response Surface Method[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(11): 87-94. doi: 10.3724/j.gyjzG24022808
Citation: LAI Guanghong, SUN Zhenghe, LIAO Feiyu, CHEN Yufeng, ZHANG Siya. Mix Proportion Optimization Design and Microstructure Study of UHPC Containing Polyvinyl Alcohol Fibers Based on Response Surface Method[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(11): 87-94. doi: 10.3724/j.gyjzG24022808

基于响应面法的聚乙烯醇纤维超高性能混凝土(UHPC)配合比优化设计及微观结构研究

doi: 10.3724/j.gyjzG24022808
基金项目: 

国家自然科学基金项目(52378140)

福建省中青年教师教育科研项目(科技类)(JAT231023)

福建建工集团科技项目(Z-Y-2021-0026)。

详细信息
    作者简介:

    赖光洪,博士,讲师,主要从事土木工程材料研究,laigh@fafu.edu.cn。

    通讯作者:

    廖飞宇,博士,教授,主要从事钢-混凝土组合结构研究,feiyu.liao@fafu.edu.cn。

Mix Proportion Optimization Design and Microstructure Study of UHPC Containing Polyvinyl Alcohol Fibers Based on Response Surface Method

  • 摘要: 为探究聚乙烯醇(PVA)纤维对超高性能混凝土(UHPC)力学性能的影响,采用响应面法中的Box-Behnken试验设计方法构建二次多项式回归模型,研究不同胶砂比、硅灰掺量、粉煤灰掺量和偏高岭土掺量对UHPC基体抗压强度的影响,进行优化设计得到PVA纤维UHPC的最佳配合比,并结合扫描电子显微镜(SEM)阐述了PVA纤维UHPC的微观结构变化。结果表明:胶砂比对UHPC基体抗压强度的影响最大,粉煤灰掺量次之,硅灰掺量和偏高岭土掺量影响较小;当胶砂比为1.10、硅灰掺量为4.70%、粉煤灰掺量为18.30%、偏高岭土掺量为6.55%时,UHPC基体的抗压强度达到最大值,此时PVA纤维UHPC的28 d抗压强度和抗拉强度分别为122 MPa、11.5 MPa;PVA纤维与基体表现出良好的黏结性能,具有更致密的微观结构,表现出优异的力学性能,尤其在抗拉性能方面。
  • [1] AMRAN M, MURALI G, MAKUL N, et al. Sustainable development of eco-friendly ultra-high performance concrete (UHPC): cost, carbon emission, and structural ductility[J]. Construction and Building Materials, 2023, 398, 132477.
    [2] WU Z M, SHI C J, HE W, et al. Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete[J]. Construction and Building Materials, 2016, 103: 8-14.
    [3] PYO S, EL-TAWIL S, NAAMAN A E. Direct tensile behavior of ultra high performance fiber reinforced concrete (UHP-FRC) at high strain rates[J]. Cement and Concrete Research, 2016, 88: 144-156.
    [4] SHARMA R, JANG J G, BANSAL P P. A comprehensive review on effects of mineral admixtures and fibers on engineering properties of ultra-high-performance concrete[J]. Journal of Building Engineering, 2022, 45, 103314.
    [5] STENGEL T. Effect of surface roughness on the steel fiber bonding in ultra high performance concrete (UHPC)[D]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
    [6] ASHKEZARI G D, FOTOUHI F, RAZMARA M. Experimental relationships between steel fiber volume fraction and mechanical properties of ultra-high performance fiber-reinforced concrete[J]. Journal of Building Engineering, 2020, 32, 101613.
    [7] KIM S, CHOI S, YOO D Y. Surface modification of steel fibers using chemical solutions and their pullout behaviors from ultra-high-performance concrete[J]. Journal of Building Engineering, 2020, 32, 101709.
    [8] 张贵, 鹏改非, 类泽灏, 等. 基于聚乙烯纤维表面改性的超高性能混凝土应变硬化机理[J]. 硅酸盐学报, 2021, 49(11): 2346-2354.
    [9] PAKRAVAN H R, OZBAKKALOGLU T. Synthetic fibers for cementitious composites: a critical and in-depth review of recent advances[J]. Construction and Building Materials, 2019, 207: 491-518.
    [10] MOSAVINEJAD S H G, LANGAROUDI M A M, BARANDOUST J, et al. Electrical and microstructural analysis of UHPC containing short PVA fibers[J]. Construction and Building Materials, 2020, 235, 117448.
    [11] YAO J, GE Y L, RUAN W Q, et al. Effects of PVA fiber on shrinkage deformation and mechanical properties of ultra-high performance concrete[J]. Construction and Building Materials, 2024, 417, 135399.
    [12] 周敏, 吴泽媚, 欧阳雪, 等. 组成及骨料特性对UHPC基体流动性和抗压强度的影响[J]. 材料导报, 2023, 37(18): 101-109.
    [13] 樊俊江, 於林峰, 韩建军. 配比参数对UHPC流动性及抗压强度的影响试验研究[J]. 新型建筑材料, 2019, 46(5): 5-8.
    [14] SONG Q L, YU R, WANG X P, et al. A novel self-compacting ultra-high performance fibre reinforced concrete (SCUHPFRC) derived from compounded high-active powders[J]. Construction and Building Materials, 2018, 158: 883-893.
    [15] 莫宗云. 掺偏高岭土UHPC基体的强度发展和再水化特性[D]. 哈尔滨:哈尔滨工业大学, 2021.
    [16] 夏寿荣. 最新混凝土外加剂生产配方精选400例[M]. 北京:中国建筑工业出版社, 2014.
    [17] 李晓龙, 何盛东, 林玉婷, 等. 加入纤维前后混凝土的劈裂抗拉性能研究[J]. 高科技纤维与应用, 2022, 47(6): 49-54.
    [18] SHEN P L, LU L N, HE Y J, et al. The effect of curing regimes on the mechanical properties, nano-mechanical properties and microstructure of ultra-high performance concrete[J]. Cement and Concrete Research, 2019, 118: 1-13.
    [19] DEHGHANPOUR H, SUBASI S, GUNTEPE S, et al. Investigation of fracture mechanics, physical and dynamic properties of UHPCs containing PVA, glass and steel fibers[J]. Construction and Building Materials, 2022, 328, 127079.
    [20] LIN S D, LI L. Surface modification on dispersion and enhancement of PVA fibers in fiber-reinforced cementitious composites[J]. Science and Engineering of Composite Materials, 2017, 24: 901-907.
    [21] NOUSHINI A, SAMALI B, VESSALAS K. Effect of polyvinyl alcohol (PVA) fibre on dynamic and material properties of fibre reinforced concrete[J]. Construction and Building Materials, 2013, 49: 374-383.
  • 加载中
计量
  • 文章访问数:  16
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-28
  • 网络出版日期:  2024-12-05

目录

    /

    返回文章
    返回